Présentation

Article

1 - PHÉNOMÈNES DE TRANSPORT DANS LES MÉTAUX

2 - EFFET DE PEAU

3 - PERTES DANS LES DIFFÉRENTES TECHNOLOGIES

4 - IMPÉDANCE DE TRANSFERT

5 - MICROMÉCANIQUE, NANOTECHNOLOGIES ET NOUVEAUX DISPOSITIFS

6 - CONCLUSION

| Réf : E1205 v2

Pertes dans les différentes technologies
Conducteurs en hautes fréquences

Auteur(s) : Henri BAUDRAND

Date de publication : 10 nov. 2008

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

RÉSUMÉ

Les conducteurs en hautes fréquences ont comme caractéristique essentielle de suivre de près les évolutions technologiques des matériaux dans le souci de limiter les pertes et de miniaturiser les dispositifs électroniques. Ceci exige une réévaluation théorique des phénomènes de transport, conséquence de l'introduction des nanotechnologies .Dans un cadre plus traditionnel, de nombreuses applications sont abordées : en compatibilité électromagnétique, circuits et lignes planaires, pertes par rayonnement et utilisation des techniques quasi-optiques.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

ABSTRACT

The essential characteristic of high-frequency conductors is that they keep pace with the technological developments of materials in order to limit losses and miniaturize electronic devices. This requires a theoretical reassessment of transportation phenomena due to the introduction of nanotechnologies. Numerous applications are discussed within a more traditional context: in electromagnetic compatibility (EMC), circuits and planar lines, losses by radiation and use of quasi-optical techniques.

Auteur(s)

  • Henri BAUDRAND : Ingénieur, docteur ès sciences - Professeur émérite à l'Institut national polytechnique de Toulouse

INTRODUCTION

L'utilisation des conducteurs en hautes fréquences a considérablement évolué depuis les années de la fin du dernier siècle. Il faut évoquer la révolution des nanotechnologies, dont les premières manifestations sont l'élaboration du microscope à effet tunnel et la découverte des nanotubes. Mais les technologies classiques de photolithographie ainsi que les procédés faisant appel à la micromécanique permettent de diminuer la dimension latérale des lignes jusqu'au micromètre. À ce propos, la fameuse loi de Moore  se vérifie encore plus de quarante années après sa première formulation : le nombre de transistors d'un circuit intégrés double tous les deux ans (dix-huit mois dans l'article original), malgré les difficultés engendrées par le niveau moléculaire des plus petites dimensions atteintes maintenant. Cela implique une diminution d'autant des largeurs et longueurs de lignes. Si bien que certains sujets qui étaient très sensibles, en particulier concernant les pertes le long des lignes de transmission le sont beaucoup moins pour ce type de circuits vu la petitesse des connexions.

Par ailleurs, les progrès exponentiels des moyens de calcul ont amené progressivement les concepteurs de circuits à exploiter les couplages électromagnétiques directs, car ils sont devenus accessibles à la simulation électromagnétique et peuvent donc être contrôlés. L'exemple le plus connu et sans doute le plus ancien est la suppression de la tige d'excitation d'une antenne plaque, et son remplacement par une ouverture rayonnante dans le plan de masse . Depuis l'utilisation de surfaces sélectives en fréquences dans les circuits et la variété des dispositifs quasi optiques montre que la ligne, ou le guide traditionnel, n'est plus dans bien des cas la seule solution pour élaborer un circuit. Enfin, on constate que les métaux ne constituent plus la seule possibilité pour réaliser des conducteurs : les procédés de sérigraphie font appel à des encres conductrices, et des conducteurs moléculaires ou composites se développent, pour des raisons de coût mais aussi de souplesse dans la réalisation, certains sont même flexibles . Ces matériaux ne vont pas bien sûr remplacer dans un proche avenir les circuits planaires à plaque métallisée, (PCB : « Printed Circuits Boards » en anglais) très utilisés dans l'électronique courante.

Dans les paragraphes suivants, ces considérations seront illustrés par des exemples de réalisations industrielles, mais aussi par des recherches qui portent en elles des développements prometteurs. Une place sera faite aux dernières avancées qui risquent de bouleverser les techniques actuelles. Il y a les nanotubes, la spintronique, et, dans le domaine de l'optique, la plasmonique. L'enjeu est d'augmenter la fréquence des ordinateurs et le nombre de bascules, avec l'espoir que la loi de Moore se vérifie encore dans l'avenir proche (sa validité est souvent mise en doute au-delà des années 2020).

Cependant, les conducteurs en hautes fréquences ont un comportement de base qui n'a guère évolué depuis les années 1960. Les modèles sont simples et utiles, ils seront rappelés dans le premier paragraphe.

Il est important également de poser les bases de la compatibilité électromagnétique, discipline qui prend de plus en plus d'importance avec la multiplication des dispositifs communiquant sans fil, et le remplacement, maintenant courant, des métaux par des composites, en particulier pour les boîtiers des circuits, qui ont de bonnes performances en masse, en résistance mécanique et surtout en coût, mais, en revanche, qui sont plus transparents aux ondes électromagnétiques que les matériaux traditionnels, et donc plus sensibles aux perturbations électromagnétiques. Un modèle simple de l'impédance de transfert sera développé au paragraphe 2.

Le paragraphe suivant sera consacré aux différentes technologies les plus courantes, et aux pertes correspondantes.

Enfin, les dernières avancées dans l'utilisation et la conception des conducteurs seront évoquées dans le dernier paragraphe, elles concernent la micromécanique, les nanotechnologies, les conducteurs non métalliques, les techniques quasi optiques, la plasmonique et la spintronique.

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

KEYWORDS

high frequencies circuits   |   ohmic losses   |   radiating losses   |   shielding   |   transfer impedance   |   nanoconductors   |   electronics   |   microwaves

VERSIONS

Il existe d'autres versions de cet article :

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v2-e1205


Cet article fait partie de l’offre

Électronique

(242 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation

3. Pertes dans les différentes technologies

On constate depuis la montée en puissance des technologies de l’information, que les conducteurs sont moins utilisés qu’il y a une vingtaine d’années pour les communications à grande ou moyenne distance (de quelques mètres à plus de cent mètres, la téléphonie restant une exception). Cela est dû pour partie à l’augmentation de la fréquence des dispositifs. On traite plus facilement en transmission sans fil des signaux à des fréquences de l’ordre du gigahertz, sans compter l’aspect économique ou pratique. On peut penser aux badges sans contacts (ou RFID : radio frequency identification device), mais aussi aux bornes WiFi et aux téléphones cellulaires.

Par ailleurs, dans les parties numériques des circuits, on utilise des connexions très courtes pour lesquels le problème des pertes n’est pas fondamentalement important. Par contre, le sujet est très sensible quand on traite des dispositifs en électronique analogique hautes fréquences ; ainsi, le rendement d’une antenne à bande étroite peut être détérioré du fait d’un mauvais choix technologique. Il en est ainsi pour la réalisation de filtres à flancs raides qui demande de hautes surtensions, donc une technologie soignée. Après avoir distingué trois groupes importants dans les lignes de transmission, on tentera d’évaluer leurs pertes et les moyens de les améliorer.

3.1 Catégories de lignes

On peut classer les lignes en trois grands types qui se distinguent par la valeur plus ou moins grande de leurs pertes :

  • les guides d’ondes à parois métalliques et guides diélectriques ;

  • les lignes de type à ailettes ou coplanaires ;

  • les lignes microbandes, triplaques ou coaxiales.

Les guides d’ondes métalliques et les lignes coaxiales sont les plus anciens. Apparus dans les années 1930, leur développement a été accéléré dans les années 1940, dans le cadre de la mise au point du radar. Ne présentant aucun rayonnement et ayant de faibles pertes, ils ont été pendant trois décennies les seuls types de lignes de transmission utilisés.

Les lignes microbandes et triplaques sont apparues dans les années 1960 (figure 3a), avec les premiers circuits imprimés micro-ondes. Malgré leurs pertes élevées, et leurs rayonnements...

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Électronique

(242 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Pertes dans les différentes technologies
Sommaire
Sommaire

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Électronique

(242 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS