Présentation

Article

1 - PANORAMA ÉCONOMIQUE

2 - PRINCIPALES PHASES DE LA FABRICATION

3 - PRINCIPALES APPLICATIONS INDUSTRIELLES

4 - RECYCLAGE

5 - CONCLUSION

| Réf : IN158 v1

Conclusion
Terres rares : enjeux économiques et principales applications

Auteur(s) : Xavier de LOGIVIERE

Date de publication : 10 févr. 2013

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

RÉSUMÉ

Les terres rares sont au cœur de toutes les technologies dites « vertes » et de nos objets communicants. Compte tenu de ces enjeux stratégiques, tous les pays industrialisés sont mobilisés pour ne pas se mettre entre les mains d'un seul pays producteur. L'objet de ce document est de faire une synthèse des besoins en terres rares en fonction des applications et d'attirer l'attention sur la nécessité d'un programme de recyclage pour éviter une pénurie annoncée.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

ABSTRACT

Rare Earth: economic challenges and main applications

Rare earth at at the core of all green technologies and our communicating objects. Due to these srategic challenges, all industrialized countries have taken step in order to avoid being dependent upon a single producer country. This article provides a synthesis of the needs for rare earth according to the applications and highlights the need for a recycling programme in order to address an announced shortage.

Auteur(s)

  • Xavier de LOGIVIERE : Consultant, Paris – France

INTRODUCTION

Résumé

les terres rares sont au cœur de toutes les technologies dites « vertes » et de nos objets communicants. Compte tenu de ces enjeux stratégiques, tous les pays industrialisés sont mobilisés pour ne pas se mettre entre les mains d'un seul pays producteur. L'objet de ce document est de faire une synthèse des besoins en terres rares en fonction des applications et d'attirer l'attention sur la nécessité d'un programme de recyclage pour éviter une pénurie annoncée.

Abstract

rare earth is considered as a strategic raw material for the emerging green tech as well as communication means (from the optical fiber to the Smartphone), therefore, all the top industrials countries are not willing to tie their hands with a unique manufacturing country. The goal of this paper is to review key technologies and draw the attention on the need of rare earth recycling programs to overcome a potential shortage.

Mots-clés

magnétisme, batteries, luminophores, catalyseurs, automobile, énergies renouvelables

Keywords

magnetism, batteries, phosphors, catalyst, automotive, renewable energies

Points clés

Domaine : Électronique, automobile, énergie, éclairage

Degré de diffusion de la technologie : Émergence | Croissance | Maturité

Technologies impliquées : Métallurgie, magnétisme, dépôt couche mince (PECVD)

Domaines d'application : Batterie, aimant permanent, luminophore, catalyseur

Principaux acteurs français : Rhodia

Pôles de compétitivité : TEAM2-CD2E ( http://www.team2.fr)

Centres de compétence :

Industriels : Rhodia

Autres acteurs dans le monde : Molycorp (États-Unis) – Shin Etsu (Japon) – Less Common Metals (Grande-Bretagne) – LYNAS Corp. – AVALON Rare Metals (Canada) – Indian Rare Earth (Inde)

Contact : [email protected]

Un peu d'histoire... [1]

L'histoire démarre en Suède en 1788, avec la découverte par Carl Axel Arrhenius, dans la localité d'Ytterby d'un minerai noir ; on lui donnera le nom d'« ytterbite » puis plus tard de « gadolinite », du nom du professeur finlandais Gadolin. Ce dernier nommera ces éléments « terres rares ».

Durant cette période préliminaire, les terres rares sont examinées scientifiquement mais ne sont pas utilisées.

1803 : Klaproth et Berzelius découvrent à Bastnas en Suède, un nouveau type de minerai, ils lui donneront le nom de « bastnasite ».

1827 : Mosander découvre la première terre rare métallique.

1839 : Mosander va travailler sur leur séparation, puis Bunsen et Kirchhoff sur l'analyse des terres par spectroscopie.

1885 : Carl Auer von Welsbach dépose un brevet sur un composé de lanthane zirconium qui a des propriétés d'incandescence avec une émission de lumière dans la gamme du visible.

1891 : Carl Auer von Welsbach dépose un nouveau brevet sur un composé d'oxyde de thorium + 1 % d'oxyde de cérium, alliage qui sera utilisé jusqu'en 1935 : 5 milliards de manchons seront utilisés à travers le monde.

1903 : Carl Auer von Welsbach invente un alliage pyrophorique (70 % mischmetal + 30 % de fer) : la pierre à briquet est née.

Entre 1930 et 1940 : utilisation de l'oxyde de cérium comme agent de polissage et de décolorant du verre ; début de leur utilisation dans les catalyseurs (ThO2) dans le procédé Fischer-Tropsch.

Dans les années 1950 : utilisation massive du thorium dans les programmes nucléaires, il a fallu donc trouver des débouchés aux terres rares, sous-produit de la production de thorium et c'est à cette époque que l'on chercha des débouchés industriels pour chaque terre rare.

1953 : méthode de séparation par échange liquide/liquide.

Années 1960 : lanthane – cérium – praséodyme/néodyme seront utilisés à différents niveaux dans l'industrie du verre.

1965 : utilisation de l'europium comme luminophore rouge dans les téléviseurs.

1965 : découverte de l'alliage samarium-cobalt par Karl Strnat.

1970 : découverte des propriétés d'adsorption de l'hydrogène du lanthane nickel.

1971 : découverte des propriétés magnétostrictive du composé terbium fer dysprosium (Terfenol-D).

1976 : réalisation d'une pompe à chaleur utilisant des terres rares.

1983 : Sumitomo annonce la réalisation d'aimants permanents à base de néodyme-fer-bore.

1985 : la Chine démarre la production des terres rares à grande échelle.

1986 : découverte par des ingénieurs d'IBM des propriétés supraconductrices du composé YBa2Cu3O7-x .

1992 : introduction du MiniDisc Sony, média magnéto-optique utilisant la technologie couche mince à base d'un alliage terbium-fer-cobalt.

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-in158


Cet article fait partie de l’offre

Innovations technologiques

(183 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation

5. Conclusion

Face à la pénurie, on pourra jouer sur trois leviers :

  • davantage d'ouvertures de mines, de nombreux projets sont en cours, tels que celui de Lynas en Malaisie, néanmoins ces nouveaux sites devront tenir compte des contraintes environnementales ;

  • un recyclage systématique, avec des filières spécifiques pour chaque segment : batteries, catalyseurs, aimants permanents, luminophores ;

  • substitution par d'autres métaux .

Nous nous sommes déjà attardés sur les deux premières options, intéressons-nous à la substitution par d'autres métaux. Malheureusement, rares sont les cas de simple substitution où un composé X peut être remplacé par un composé Y ; dans la plupart des cas, la substitution nécessite de repenser complètement la conception du produit. La configuration électronique (niveau d'énergie en 4f) en font des métaux pratiquement irremplaçables ; « Les lanthanides possèdent cette configuration formée d'électrons f qui, profondément enfouies au cœur de l'atome, conservent à l'état condensé les propriétés des atomes libres, un cas unique parmi tous les éléments » .

  • Éoliennes : 14 % des nouvelles turbines à entraînement direct utilise des terres rares. En utilisant un autre type d'entraînement, on pourrait ne plus utiliser de terres rares. Pour faire face à la pénurie de néodyme, on pourrait utiliser des aimants samarium-cobalt mais beaucoup plus chers .

    ...

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Innovations technologiques

(183 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Conclusion
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - GSCHNEIDNER (K.) -   *  -  Industrial application of Rare Earth.

  • (2) -   *  -  Ernst & Young : Michel Nestour. Technology minerals – The rare earths race in on (2011).

  • (3) -   *  -  Ernst & Young : Michel Nestour. Technology minerals – The rare earths race in on (2011).

  • (4) - ZHANHENG (C.) -   Global rare earths resources and scenarios of future rare earth industry.  -  Journal of Rare Earths, vol. 29 (1er jan. 2011), Ernst & Young estimates.

  • (5) -   *  -  Megermarket, Lynas Corporation and Molycorp Inc. 2011 investor presentation and company websites, Ernst & Young : Michel Nestour.

  • (6) - BAYLIS (R.), CHEGWIDDEN (J.) -   Industrial minerals for electric vehicle technologies.  -  ROSKILL.

  • ...

DANS NOS BASES DOCUMENTAIRES

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Innovations technologiques

(183 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS