Article de référence | Réf : E4325 v1

Différents principes d’imagerie active
Lidars sous-marins

Auteur(s) : Gilles KERVERN

Relu et validé le 16 sept. 2019

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Auteur(s)

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

INTRODUCTION

À l’heure actuelle, l’acoustique est le moyen couramment utilisé pour former des images du fond marin à longue distance, quelques centaines de mètres (figure A), tandis que l’utilisation de l’optique est restreinte à l’identification courte distance (quelques mètres) par caméra vidéo classique. Ce partage des rôles entre acoustique et optique en imagerie sous-marine est, en partie, la conséquence des différences de propriétés physiques des ondes acoustiques ou optiques en milieu marin, mais aussi de l a différence de maturité des technologies associées. En conséquence, l’avènement de sources lumineuses cohérentes et modulables en amplitude et en fréquence (lasers) associées à l’utilisation de techniques de traitement du signal inspirées des techniques radars permet d’envisager une extension du rôle de l’optique en imagerie sous-marine ainsi que la réalisation de systèmes nouveaux (figure B) mettant à profit la propriété des ondes lumineuses de passer avec un très bon rendement l’interface air/eau, à la différence des ondes acoustiques :

en incidence normale pour : , .

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-e4325


Cet article fait partie de l’offre

Optique Photonique

(218 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation

3. Différents principes d’imagerie active

L’intérêt principal d’un imageur lidar, par rapport à un système optique classique, est de pouvoir accroître la portée en séparant la lumière parasite rétrodiffusée par le milieu de celle réfléchie par la cible. Pour cela, il est nécessaire de pouvoir marquer la lumière issue de l’émetteur de façon à obtenir un critère de discrimination de la lumière rétrodiffusée. Trois types évidents de marquage peuvent être envisagés et amènent aux trois principes classiques d’imagerie en milieu diffusant ou réverbérant (en volume).

  • Le marquage angulaire et spatial : il nécessite l’utilisation de champs angulaires de réception et d’émission très fins et directifs et la réalisation d’un balayage conjoint de l’émetteur et du récepteur

(en position bistatique) de façon à réduire le volume de rétrodiffusion. Ce principe présente des difficultés de réalisation du point de vue mécanique.

  • Le marquage temporel : il utilise la différence des temps de propagation entre lumière rétrodiffusée et lumière réfléchie par la cible pour permettre la séparation des signaux parasites. Ce principe nécessite une émission très brève de l’ordre de 10 ns et un photodétecteur très rapide (plus de 100 MHz de bande passante).

  • Le marquage en polarisation : il met à profit la différence d’état de polarisation entre la lumière réfléchie par la cible et la lumière rétrodiffusée par le milieu, l’utilisation d’une émission polarisée et d’un analyseur en réception permet d’exploiter cette différence. La mise en œuvre de ce principe est simple mais son efficacité est très variable en fonction de l’origine de la diffusion et de l’état de surface de la cible.

Ces trois principes, éventuellement associés, conduisent naturellement à utiliser une source laser seule capable...

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Optique Photonique

(218 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Différents principes d’imagerie active
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - IVANOFF (A.) -   Introduction à l’Océanographie : propriétés physiques et chimiques des eaux de mer.  -  Tomes I et II, Vuibert Paris, 1975.

  • (2) - JERLOV (M. G.) -   Marine Optics,  -  2e édition, Elsevier, Oceanography series, 1976.

  • (3) - WELLS (W. J.) -   Theory of small angle scattering, in Optic of the Sea.  -  Edition and Reproduction Technical in optic of the sea Reproduction Ltd. Agard (Nato). Lecture series n× 61, 1973.

  • (4) - PENNY (M. F.), ABBOT (R. H.), PHILLIPS (D. M.) , BILLARD (B.) -   Airborne laser hydrography in Australia  -  . Applied Optics, vol. 25 n× 13, 1986.

  • (5) - LEGALL (A.), TOULLEC (B.), KERVERN (G.) et CERTENAIS (J.) -   Airborne laser bathymetry : a novel technique for shallow water monitoring  -  , Revue Technique Thomson-CSF, vol. 25, n× 3, septembre 1993.

  • (6) - LEBRUN (G.), LEJEUNE (B.), CARISER...

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Optique Photonique

(218 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS