Présentation

Article

1 - PRINCIPES ET CONTEXTE

2 - MISE EN ŒUVRE, ÉTAT DE L'ART

3 - ÉVOLUTION FUTURE

4 - CONCLUSION

5 - SOURCES BIBLIOGRAPHIQUES

6 - ORGANISMES ET SOCIÉTÉS

Article de référence | Réf : NM2400 v1

Évolution future
Cryptographie quantique en sécurisation des réseaux. Situation et perspectives

Auteur(s) : Alexios BEVERATOS

Date de publication : 10 avr. 2008

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Auteur(s)

  • Alexios BEVERATOS : Docteur en physique et chercheur au laboratoire de Photonique et Nanostructures, LPN CNRS UPR 20, à Marcoussis

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

INTRODUCTION

La cryptographie quantique nécessite le développement, comme on le montrera, de nouveaux outils, tels que les sources, ou bien les détecteurs de photons uniques. Dans le cas des sources, il est indispensable de pouvoir travailler avec un système quantique unique, tel qu'une boîte quantique en semiconducteur, dans une structure de cristal photonique. Dans le cas des détecteurs, il est nécessaire de maîtriser la nanofabrication des composants afin d'augmenter l'efficacité quantique et diminuer le bruit.

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-nm2400


Cet article fait partie de l’offre

Optique Photonique

(218 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation

3. Évolution future

3.1 Sources de photons uniques télécoms

Les protocoles alternatifs permettent l'établissement d'une liaison sécurisée sur des distances plus importantes comparé à une source cohérente atténuée. Néanmoins, à grande distance, une source de photons uniques efficace permettra un débit plus élevé. Plus important encore, dans le cadre d'un réseau quantique avec implémentation de relais ou de répéteurs quantiques, une source de photons uniques est indispensable afin de garantir une fidélité du protocole suffisamment élevée .

La réalisation de sources de photons uniques pompés électriquement, émettant à 1,3 µm ou 1,55 µm et avec une cadence de l'ordre du GHz, reste encore un défi. Des études sont menées sur plusieurs des points cités mais, actuellement, aucun dispositif ne les réunit tous.

Les sources de photons uniques émettant dans les longueurs d'onde des télécommunications tirent profit des récentes avancées en la matière effectuées par les groupes de recherche travaillant sur les lasers à boîtes quantiques. Ainsi, en 2006, l'émission de photons uniques à 1,3 µm a été observée. Les boîtes utilisées sont réalisées à base de InAs/GaAs déposé par MBE. Néanmoins, deux problèmes importants persistent. Une longueur d'onde dans la bande C du spectre des télécommunications (1,5 – 1,6 µm) semble difficilement accessible. Deuxièmement, l'emplacement de la boîte quantique lors de la croissance est aléatoire, ce qui rend leur couplage avec une microcavité probabiliste. Plusieurs échantillons doivent être préparés afin d'en trouver un contenant une boîte en résonance avec une microcavité pour tirer profit de l'effet Purcell maximum.

(d'après . Crédit photo Appl. Phys. Lett (2005))

Une autre voie intéressante provient d'un autre couple de matériaux semiconducteurs. En effet, les boîtes quantiques en InAs déposées sur de l'InP ont un spectre d'émission centré autour de 1,6 µm . Le dépôt des boîtes quantiques croît par MOCVD (Metal-Organic Chemical Vapor Deposition) compatible avec les développements industriels, et cette technique de dépôt permet aussi de faire croître des boîtes quantiques localisées (, figure 22).

Les...

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Optique Photonique

(218 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Évolution future
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - SINGH (S.) -   Histoire des codes secrets  -  . Fourth Estate Limited, 1999.

  • (2) - BENNETT (C.), BRASSARD (G.) -   Quantum Cryptography: Public Key Distribution and Coin Tossing  -  . Proc. of the IEEE International conference on Computers, Systems and Signal Processing 175, Bangalore, India, 1984.

  • (3) - SCARANI (V.), IBLISDIR (S.), GISIN (N.), ACIN (A.) -   Quantum cloning  -  . Rev. Mod. Phys. 77, 1225, 2005.

  • (4) - WIESNER (S.) -   Conjugate Coding SIGACT News  -  , 15:1, pp. 78-88, 1983.

  • (5) - BENNETT (C.), BESSETTE (F.), BRASSARD (G.), SALVAIL (L.), SMOLIN (J.) -   Experimental Quantum Cryptography  -  . J. of Cryptology 5, 3, 1992.

  • (6) - NIELSEN (P.), SCHORI (C.), SORENSEN (J.), SALVAIL (L.), DAMGARD (I.), POLZIK (E.) -   *  -  J. Mod. Opt. 48, 1921, 2001.

  • ...

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Optique Photonique

(218 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS