Les robots médicaux traités dans cet article sont des systèmes utilisés pour assister les médecins et chirurgiens dans la réalisation de procédures médicales sur des patients. Ils sont généralement constitués d’une structure mécanique motorisée située dans la salle d’opération, à côté du patient au moment de l’opération, qui est dans certains cas en apparence similaire à un bras robotique industriel. À cela s’ajoute une interface humain/machine permettant à un utilisateur médical de commander le positionnement ou les mouvements du bras robotique. Cette interface peut prendre des formes très variées allant d’un simple ensemble de périphériques informatiques conventionnels (écran, clavier, souris) à des systèmes mécatroniques évolués appelés interfaces haptiques. L’interface humain/machine permet également à l’utilisateur d’accéder aux outils de décision médicale, en particulier les images médicales. L’ensemble est contrôlé par un système logiciel et électronique faisant le lien entre l’interface humain/machine et la structure motorisée et assurant la réalisation des commandes de l’utilisateur.
Les premiers robots médicaux ont été introduits au milieu des années 1980 pour des applications dans le domaine de la neurochirurgie. Un robot industriel de type PUMA-260 a été utilisé sur 22 patients au Long Beach Hospital en Californie. En France, le robot Speedy développé au laboratoire TIMC à Grenoble fut introduit en 1989 également pour la neurochirurgie. Le premier robot commercial fut le système Robodoc utilisé pour la chirurgie orthopédique de la hanche, disponible à partir de 1992. Le développement des robots médicaux s’est fortement accéléré à la fin des années 1990 et au début des années 2000 dans le domaine de la chirurgie minimalement invasive laparoscopique, en particulier avec le système Da Vinci.
Les robots ont aujourd’hui investi une grande partie des domaines médicaux en raison des principaux avantages suivants :
-
précision et prédictibilité : ces caractéristiques sont particulièrement intéressantes en orthopédie et neurochirurgie ;
-
dextérité : en chirurgie minimalement invasive, les robots permettent de contrôler des mobilités à l’intérieur du corps du patient de façon intuitive grâce aux principes de la télémanipulation ;
-
contrôle simultané de nombreux degrés de liberté (DDL) et d’instruments multiples : la télémanipulation offre également la possibilité à une seule personne de contrôler plus de deux instruments. Cela permet d’envisager de réaliser de la chirurgie minimalement invasive seul, sans assistant pendant les phases médicales ;
-
stabilisation et filtrage des tremblements : en microchirurgie (chirurgie de l’œil, neurochirurgie), la structure mécanique du robot ou ses modes de commandes peuvent avantageusement être utilisés pour éliminer les mouvements involontaires de l’utilisateur ;
-
travail en environnement difficile d’accès : les robots permettent d’accéder au centre des imageurs médicaux. Ils permettent également de protéger le praticien dans le cas d’imageurs ionisants par la commande à distance. Ces caractéristiques sont particulièrement intéressantes dans le cas des gestes en radiologie interventionnelle ;
-
déplacement de charges lourdes : en radiothérapie, les robots permettent de déplacer et de positionner un accélérateur linéaire à rayons X avec une large plage d’orientations.
Certains de ces avantages sont aussi mis à profit en robotique industrielle, mais les caractéristiques de l’environnement médical génèrent des développements spécifiques.
Les architectures mécaniques doivent adapter le robot aux gestes médicaux et à l’espace disponible dans les salles d’opération ou d’imagerie. Par exemple, les robots de radiologie interventionnelle doivent se conformer à l’espace disponible dans l’imageur. Les robots de chirurgie laparoscopique doivent assurer le passage des instruments par les points d’incision dans l’abdomen. En outre, les solutions d’actionnement doivent être compatibles avec les salles d’opération. Le robot doit aussi pouvoir exécuter précisément une tâche spécifiquement définie pour un patient. Pour cela, il doit utiliser des images de planification préopératoire. Enfin, les robots médicaux travaillent en interaction avec le patient et doivent donc assurer la sécurité de celui-ci, travailler en contact avec les tissus et s’adapter aux mouvements naturels du patient.
Cet article présente quelques technologies et méthodes utilisées dans le domaine de la robotique médicale en mettant l’accent sur les spécificités liées à ce champ d’application.
La première section discute des aspects permettant d’assurer la compatibilité des systèmes robotiques avec les salles d’opération et d’imagerie en traitant le cas particulier des salles d’IRM qui présentent le plus grand défi actuel en termes de contraintes. La deuxième section s’intéresse à la problématique de l’interfaçage entre le geste médical défini par le médecin et le mouvement réalisé par le robot. Enfin, la dernière section traite des méthodes permettant de réaliser des gestes autonomes dans les cas difficiles d’interactions entre les instruments robotiques et les tissus ou dans le cas de mouvements physiologiques.
D’autres aspects importants du domaine ne sont pas abordés dans cet article. Outre la compatibilité avec les imageurs, les robots médicaux doivent être adaptés au geste médical. Par exemple, en chirurgie laparoscopique, il faut imposer les contraintes cinématiques du passage des instruments par le point d’incision, ce qui peut être réalisé par une architecture mécanique adéquate, comme cela sera évoqué brièvement dans la première section. Pour qu’un système robotique devienne un dispositif médical, la sécurité pour le patient et l’utilisateur médical est primordiale. Ces aspects sont généralement assurés à la fois par des solutions mécaniques, électroniques et logicielles associées à des méthodes d’analyse de risques et de tests rigoureuses. Cet article n’aborde pas non plus les systèmes intracorporels basés sur la micro et nanorobotique qui sont des pistes encourageantes d’évolution des systèmes robotiques médicaux.