Présentation

Article

1 - MODALITÉS ET PRÉTRAITEMENTS

2 - EXTRACTION DE CONNAISSANCES

3 - GÉNÉRATION DE MODÈLES ANATOMIQUES

4 - CONCLUSION

Article de référence | Réf : MED900 v1

Conclusion
Analyse et traitement d'images anatomiques en IRM cérébrale

Auteur(s) : François ROUSSEAU, Nicolas PASSAT

Date de publication : 10 févr. 2014

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

RÉSUMÉ

L'imagerie par résonance magnétique (IRM) est couramment employée pour observer le cerveau humain, tant à des fins cliniques que de recherche. Toutefois, les images IRM, en raison de leur complexité spectrale et sémantique, restent difficiles à analyser par l'homme, une assistance informatique est nécessaire. Cet article décrit les principales solutions proposées pour traiter, analyser et modéliser l'information anatomique portée par les images cérébrales en IRM. Il présente également des avancées liées à des modalités récentes.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

ABSTRACT

Analysis and Processing of Anatomical Brain MR Images

Magnetic Resonance Imaging (MRI) is frequently used for visualising the human brain, both for clinical and research purposes. However, due to their spectral and semantic complexity, MRI images of the brain are difficult to analyse. The human expert then need computer-based assistance. This article describes the main solutions that have been proposed for processing, analysing and modeling the anatomical information carried by brain MRI images. It also focuses on new advances related to recent modalities.

Auteur(s)

  • François ROUSSEAU : Chargé de recherche CNRS ICube, université de Strasbourg/CNRS, Strasbourg, France

  • Nicolas PASSAT : Professeur des universités CReSTIC, université de Reims Champagne-Ardenne, Reims, France

INTRODUCTION

L'imagerie par résonance magnétique (IRM) constitue l'une des modalités les plus fréquentes en imagerie médicale, au même titre que l'imagerie par rayons X ou l'imagerie échographique. L'IRM associe les avantages de ces dernières modalités, sans toutefois pâtir de leurs faiblesses. Elle fournit en effet un haut niveau de résolution spatiale et spectrale, sans induire de radiation nocive pour les patients, ni nécessiter (dans la plupart des cas) l'injection de produit de contraste.

Grâce à ces qualités, l'IRM est devenue la modalité d'acquisition d'images privilégiée pour la plupart des examens médicaux liés à des affections cérébrales. Dans ce contexte, des séquences d'acquisition spécifiques ont été progressivement développées afin de répondre à des besoins liés à des structures anatomiques ou pathologiques particulières (réseaux vasculaires, tumeurs, etc.) pour le diagnostic, le suivi ou le traitement des patients. Désormais, les scanners IRM constituent un équipement standard dans les centres hospitaliers.

Pour les mêmes raisons d'efficacité et de sécurité, l'IRM constitue un remarquable outil de recherche pour l'étude in vivo du cerveau humain. Là encore, des séquences d'acquisition spécifiques permettent de progresser dans la compréhension de la structure du cerveau, de son développement (maturation cérébrale chez le fœtus et le jeune enfant) et de son évolution (dégénérescence liée au vieillissement) mais aussi dans la compréhension de son fonctionnement, tant sur le plan physiologique que cognitif.

Les utilisateurs d'images IRM se trouvent toutefois confrontés à plusieurs défis, liés à la nature et au contenu de ces images. La première difficulté dérive des progrès constants accomplis par les constructeurs de scanners IRM. Les images bidimensionnelles ont désormais laissé la place à des images 3D, voire 4D (images en espace et en temps). Les volumes d'information deviennent alors tels que leur analyse par le seul œil humain n'est plus possible. La résolution des images croît également, atteignant désormais des valeurs sous-millimétriques. Cette finesse de détails, associée à la très haute complexité anatomique du cerveau humain, aboutit à une seconde difficulté, liée à l'analyse sémantique des images IRM, qui – si elle repose sur l'expertise humaine – ne peut plus désormais se passer d'une assistance informatique.

Dans ce contexte, des approches de traitement et d'analyse d'images sont développées afin d'aboutir à des outils informatiques, et notamment logiciels, capables d'assister les experts médicaux et les chercheurs dans leur utilisation des images IRM. En particulier, les problématiques considérées sont multiples, allant du signal jusqu'à la sémantique des images. Il convient tout d'abord de rendre les images acquises en IRM plus aisément lisibles, en les débarrassant au mieux d'artéfacts visuels dus aux modalités physiques de leur acquisition (§ 1). Par ailleurs, il est nécessaire de permettre ou de faciliter l'analyse de ces images, par l'extraction des structures d'intérêt (§ 2). Enfin, à un plus haut niveau d'analyse, il convient de pouvoir formaliser, regrouper et fusionner les informations extraites de ces images, afin d'aboutir à des modèles de connaissance toujours plus complets du cerveau humain (§ 3).

Cet article propose un tour d'horizon des principales réponses apportées à ces trois familles de problèmes, dans le cadre de l'imagerie anatomique, qui s'intéresse spécifiquement à la structure du cerveau plutôt qu'à son fonctionnement (dans ce contexte, il a été choisi de se focaliser sur les séquences les plus adéquates ; en particulier, des techniques d'imagerie telles que l'IRM fonctionnelle ou encore la spectroscopie ne seront pas traitées ci-après). Outre la description d'approches générales désormais considérées comme des gold standards, des exemples plus spécifiques d'approches récentes viennent également illustrer les dernières innovations liées à des modalités en pleine expansion, telles que l'IRM périnatale, l'IRM angiographique, ou encore l'IRM de diffusion.

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

KEYWORDS

state of the art   |   Nuclear magnetic resonance   |   image processing and analysis   |   computer science   |   biophysics   |   Medical Imaging   |   software

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-med900


Cet article fait partie de l’offre

Technologies pour la santé

(130 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation

4. Conclusion

Depuis son apparition, l'IRM a très largement et rapidement évolué et permet désormais de visualiser in vivo de nombreuses caractéristiques du cerveau humain. Comme il a été décrit, l'IRM autorise notamment l'observation des tissus mous cérébraux, du système vasculaire ainsi que de l'ensemble des principaux faisceaux de fibres nerveuses, mais également (non décrits dans cet article) du spectre chimique (lRM spectroscopique) ou du débit sanguin lié à l'activité cérébrale (IRM fonctionnelle). Le développement de l'IRM est intrinsèquement lié à celui de l'informatique, en premier lieu au regard de la reconstruction des images et de leur visualisation. L'IRM est devenue une modalité incontournable pour l'étude du cerveau, grâce aux méthodes informatiques de traitement et d'analyse d'images qui permettent d'extraire de ces données des informations pertinentes pour l'étude du fonctionnement cérébral.

De nombreux outils logiciels sont à présent mis à disposition gratuitement sur Internet (cf. section « outils logiciels » du « Pour en savoir plus ») et permettent la mise en œuvre de chaînes de traitement complètes d'images IRM (depuis la correction d'artéfacts jusqu'au recalage en passant par la segmentation). Ainsi, il est maintenant possible de se focaliser plus particulièrement sur l'information contenue dans les images, afin de découvrir, par exemple, de nouveaux biomarqueurs ou d'améliorer notre connaissance sur le cerveau, avec notamment la modélisation du réseau cérébral anatomique et fonctionnel. Cependant, même s'il apparaît que la discipline du traitement d'images IRM soit arrivée à maturité, de nouvelles problématiques (comme nous avons pu le voir avec les études périnatales et l'analyse du système vasculaire) et de nouvelles séquences d'IRM mettent régulièrement au jour de nouveaux défis dans ce domaine de recherche.

De plus, comme le montrent de récentes études en IRM de diffusion , l'apparente simplicité...

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Technologies pour la santé

(130 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Conclusion
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - LAUTERBUR (P.) -   Image formation by induced local interactions : examples employing nuclear magnetic resonance.  -  Nature, 242, p. 190-191 (1973).

  • (2) - WESTBROOK (C.) -   Handbook of MRI technique.  -  Wiley (1999).

  • (3) - CARR (J.C.), CARROLL (T.J.) -   Magnetic resonance angiography.  -  Springer (2012).

  • (4) - JOHANSEN-BERG (H.), BEHRENS (T.E.J.) (Eds) -   Diffusion MRI.  -  Elsevier Academic Press (2009).

  • (5) - LUSTIG (M.), DONOHO (D.L.), SANTOS (J.M.), PAULY (J.M.) -   Compressed sensing MRI.  -  IEEE Signal Processing Magazine, 25, p. 72-82 (2008).

  • (6) - BATCHELOR (P.G.), ATKINSON (D.), IRARRAZAVAL (P.), HILL (D.L.), HAJNAL (J.), LARKMAN (D.) -   Matrix description of general motion correction applied to multishot images.  -  Magnetic Resonance in Medicine,...

1 Outils logiciels

Slicer 3D (version pour Windows, Mac et Linux), États-Unis http://www.slicer.org

BrainVisa (version pour Windows, Mac et Linux), IFR49, CEA/SAC/DSV/I2BM/NeuroSpin, Gif Sur Yvette, France http://www.brainvisa.info

FSL (version pour Mac et Linux), Oxford, Angleterre http://www.fmrib.ox.ac.uk/fsl

SPM – Statistical Parametric Mapping (toolbox pour Matlab), Wellcome Trust Center for Neuroimaging, Londres, Angleterre http://www.fil.ion.ucl.ac.uk/spm

Freesurfer (version pour Mac et Linux), Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, États-Unis https://surfer.nmr.mgh.harvard.edu

LONI Pipeline (version pour Windows, Mac et Linux), Laboratory of Neuro Imaging, Los Angeles, États-Unis http://www.pipeline.loni.ucla.edu

MedINRIA (version pour Windows, Mac et Linux), INRIA, France http://med.inria.fr

HAUT DE PAGE

2 Sites Internet

NITRC : The source for neuroimaging tools and resources http://www.nitrc.org

ADNI : Alzheimer's Disease Neuroimaging Initiative http://adni.loni.usc.edu/...

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Technologies pour la santé

(130 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS