Découvert en 1896 par Henry Becquerel, le phénomène de la radioactivité et des rayonnements ionisants qui y sont associés fut rapidement exploité à des fins thérapeutiques avec le développement de la curiethérapie. Un isotope radioactif ou radioisotope génère lors de sa désintégration une particule et/ou un rayonnement électromagnétique de haute énergie pouvant générer des dégâts irréparables aux cellules tumorales environnantes, conduisant à leur mort. Depuis les prémices de la médecine nucléaire où la source radioactive était directement implantée dans la tumeur à l’aide d’une aiguille, la discipline a évolué vers une utilisation plus fine appelée radiothérapie vectorisée pour laquelle le radioisotope est fixé à un vecteur spécifique du type de tumeur à cibler avant d’être injecté au patient. Par cette approche, même les tumeurs enfouies en profondeur et les tumeurs de taille microscopique peuvent en principe être traitées tout en épargnant les tissus sains environnants. Pour ce faire, selon le type de tumeur à traiter, une parfaite adéquation entre le choix du radioisotope et du vecteur doit être trouvée.
Les particules alpha émises lors d’une désintégration radioactive sont les plus énergétiques et les plus létales pour les cellules, mais elles ne pénètrent que de quelques dizaines de micromètres dans les tissus biologiques. Pour cette raison, les émetteurs de particule α s’avèrent efficaces pour le traitement des microtumeurs rencontrées dans le cadre d’une maladie résiduelle après un traitement classique, ou lorsque la maladie évolue vers un cancer à micrométastases ainsi que dans le cas des cancers hématologiques qui s’expriment par la production de cellules tumorales circulant de façon isolée. L’irradiation étant extrêmement localisée, les cellules saines environnantes sont épargnées. Un nombre limité d’émetteurs de particules alpha d’intérêt pour la médecine nucléaire a été identifié. Parmi eux l’astate-211 présente des caractéristiques physiques des plus intéressantes pour ce type d’applications : une demi-vie de 7,2 h, ce qui est adapté à la demi-vie biologique d’un grand nombre de vecteurs, et deux branches de décroissance conduisant chacune à l’émission d’une particule α. Encore, faut-il disposer de méthodes chimiques appropriées pour constituer le couple radionucléide-vecteur qui formera le radiopharmaceutique administrable au patient. Mais, malgré la découverte de l’astate datant des années 1930, sa chimie reste difficile à appréhender, la principale raison étant l’absence d’isotopes stables, ce qui complique l’étude des propriétés de cet élément.
Une meilleure compréhension de cet élément, qui permettra de concevoir de façon optimale les vecteurs radiomarqués avec l’astate-211, est donc un enjeu majeur pour le développement de la radiothérapie vectorisée des cancers.
Dans ce contexte, sont abordés dans cet article :
-
le phénomène de la radioactivité et les propriétés des rayonnements ionisants dans le cadre du traitement des cancers ;
-
l’élément chimique astate et son isotope d’intérêt, l’astate-211, en abordant ses méthodes de production ;
-
les aspects de synthèse radiochimique avec l’astate-211 permettant la production de radiopharmaceutiques radiomarqués avec cet isotope ;
-
des exemples d’applications de l’astate-211 pour la thérapie des cancers aux stades précliniques et cliniques.
Points clés
Domaine : radiopharmaceutique
Degré de diffusion de la technologie : émergence
Technologies impliquées : radiochimie, synthèse organique, physique nucléaire
Domaines d’application : oncologie
Contact : françois.guerard@univ-nantes.fr