Contrairement à la biologie qui utilise massivement des techniques d’automatisation depuis les années soixante-dix, la chimie de synthèse a été plus réticente à s’ouvrir aux nouvelles technologies. Alors que la chimie de synthèse a fortement bénéficié de l’amélioration des outils analytiques, notamment grâce à l’apparition des spectromètres de résonance magnétique nucléaire (RMN) dans les laboratoires de recherche dès les années soixante-dix, elle n’a que peu bénéficié d’outils technologiques pour conduire des réactions chimiques. Si Marcelin Berthelot (1827-1907), l’un des plus éminents chimistes français du XIXe siècle, venait à visiter un laboratoire de recherche en chimie organique du XXIe siècle, il s’apercevrait que, comme lui 150 ans auparavant, les chimistes utilisent toujours de la verrerie standardisée pour conduire les réactions chimiques. Cette situation s’explique par le fait que les chimistes de synthèse ont naturellement privilégié l’étude du contenu (mélange réactionnel) que du contenant (réacteur, dispositif expérimental…). Bien entendu, cette situation quelque peu caricaturale tend à évoluer de plus en plus rapidement.
L’un des premiers tournants a été l’utilisation des synthétiseurs de peptides automatiques dans les années quatre-vingt-dix suivi par l’arrivée des réacteurs microondes comme dispositifs de chauffage alternatif aux méthodes traditionnelles basées sur une convection électrique. Toutefois, il a fallu attendre les années 2000 pour profondément modifier les techniques de synthèse traditionnelles avec l’apparition de la chimie en flux miniaturisée. Cette dernière a révolutionné la façon d’appréhender la conduite de réactions chimiques, notamment car elle permet d’atteindre des réactivités impossibles jusqu’alors dans des conditions de sécurité accrues. Désormais, de nombreux laboratoires académiques et industriels se sont équipés d’appareillages commerciaux.
Dans le même temps, la RMN a opéré un « retour vers le futur » spectaculaire avec le développement et la commercialisation de spectromètres de paillasse fonctionnant à bas champ entre 40 et 80 MHz pour le proton. Ces fréquences de résonance étaient typiquement celles utilisées dans les années soixante-dix mais avec des appareils ne bénéficiant pas de la miniaturisation des spectromètres de paillasse modernes. Pour atteindre ce degré de miniaturisation, la physique associée à ces nouveaux dispositifs a été singulièrement modifiée par rapport aux appareils traditionnels fonctionnant à haut champ. Ces nouveaux spectromètres de paillasse laissent entrevoir une révolution dans divers domaines des sciences chimiques et notamment pour l’analyse en temps (quasi)réel de transformations chimiques.
Cet article traite de l’utilisation des spectromètres de paillasse (donc transportable) fonctionnant à bas champ magnétique pour le suivi réactionnel de transformations conduites dans des réacteurs en flux continu. Ce domaine de recherche émergent a déjà conduit à des avancées spectaculaires et devrait conduire à moyen terme à des dispositifs de synthèse embarqués ou portatifs.
Un glossaire en fin d'article regroupe les définitions importantes ou utiles à la compréhension du texte.