Il est toujours plus difficile de convertir un signal analogique en signal numérique que le contraire. Ainsi les CAN, convertisseurs analogiques numériques, sont plus difficiles à réaliser que les CNA, convertisseurs numériques analogiques, qui sont aussi souvent plus rapides. Cet article décrit l'architecture et la technique des différents types de CAN et de CNA. Puis il présente comment on peut atteindre des performances plus élevées en combinant les deux types d'équipements.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Claude PRÉVOT
: Responsable des produits de conversions analogique-numérique et numérique-analogique à Thales Research & Technology France
INTRODUCTION
La symétrie qui existe entre conversion analogique-numérique (AN) et numérique-analogique (NA), lorsque l’on prend en compte la troncation du nombre réel vers le code binaire pour la conversion NA, disparaît en partie dans les architectures des convertisseurs [sauf pour les Sigma-Delta (ΣΔ)].
Les convertisseurs AN sont toujours plus difficiles à réaliser que les convertisseurs NA. Les CNA sont comparativement plus faciles à réaliser et, à technologie égale, les CNA sont un ordre de grandeur plus rapides.
De nombreuses architectures ont été inventées pour essayer de réaliser au mieux la conversion AN. Ces solutions ont évolué avec les technologies de réalisation pour donner le meilleur compromis fonction/coût/performances. Beaucoup de CAN contiennent un ou plusieurs CNA en rebouclage (SAR, subranging, ΣΔ...).
Un des critères les plus fréquemment rencontrés pour comparer ces convertisseurs est le facteur de mérite qui est le produit de 2 à la puissance du nombre de bits (effectif) multiplié par la fréquence d’échantillonnage divisé par la puissance consommée (voir Conversions analogique-numérique et numérique-analogique (partie 3)) :
Nota :
Cet article sur les conversions analogique-numérique et numérique-analogique se compose de trois parties :