Les éoliennes font désormais partie du paysage français et européen. Elles sont devenues les prototypes des énergies renouvelables seulement concurrencées par les panneaux photovoltaïques, au point qu'on semble avoir oublié les massifs ouvrages de l'hydroélectricité. Certes, les réacteurs nucléaires sont présents tous les jours dans les médias, mais rarement de façon positive. Les Français au fait de la technique ont une idée sur les principes de fonctionnement des réacteurs, des barrages hydroélectriques et des cellules photovoltaïques. Paradoxalement, alors que les moulins à vent sont parmi les plus anciens dispositifs de production d'énergie mécanique, les principes de fonctionnement des éoliennes sont largement ignorés. La loi de Betz qui relie la puissance de l'éolienne à la vitesse du vent et à la surface balayée par les pales, qui est donc une approche globale de l'éolienne, est assez bien connue par les initiés. À l'autre extrême, on trouve des livres de référence, tel celui de Cunty (physique très proche de celle de la propulsion à voile), qui expliquent comment une pale isolée réagit aux forces exercées par le vent sur sa surface . Mais il est difficile de trouver comment réconcilier ces deux approches apparemment contradictoires . Bien plus étonnant, si les forces du vent sont correctement traitées, celles dues à la résistance de l'air ne le sont pas. C'est l'ambition de cet article de donner une présentation unifiée et analytique de l'ensemble de phénomènes intervenant dans la transformation de l'énergie du vent en électricité. La dérivation de la loi de Betz donne une valeur maximale du rendement d'une éolienne. La présentation classique de l'interaction entre le vent et une pale d'éolienne permet de définir les forces de traînée et de portance, ainsi que les coefficients correspondants. Cette approche permet d'optimiser l'angle d'attaque mais reste statique et ne permet pas de calculer le rendement de l'éolienne, ni sa vitesse de rotation. Il faut donc, dans une première étape, traiter des effets de la résistance de l'air qui conduit à une vitesse limite de rotation dépendant essentiellement de l'angle d'attaque du vent. Dans la deuxième étape, il y a lieu d'introduire le freinage induit par le couplage à la génératrice électrique. La force de ce couplage est elle-même optimisée par rapport à la puissance électrique produite. Ajoutons qu'il est utile d'optimiser la forme des pales en faisant varier l'angle d'attaque selon la position radiale de l'action du vent, ce qui explique leurs formes complexes.
En tournant, les pales créent un sillage. Pour qu'une approche globale à la « Betz » ait un sens, il faut que la vitesse de rotation de la pale soit supérieure à une valeur limite qu'on trouve égale à environ 1 tr/min, ce qui est pratiquement toujours le cas.
La vitesse de rotation maximale des éoliennes est déterminée par la vitesse en bout de pale au-delà de laquelle des turbulences de l'air apparaissent.
Les éoliennes sont généralement regroupées en parc. Chaque éolienne extrayant une part de l'énergie du vent, la géométrie du parc doit être telle que la présence d'une éolienne ne réduise pas significativement la puissance du vent incident sur ses voisines. Cette condition commande la densité d'éoliennes du parc. L'emplacement des parcs doit également être optimisé eu égard au régime des vents.
Enfin, il existe des possibilités de pallier au moins partiellement l'intermittence de l'électricité éolienne soit par un effet de foisonnement, soit par des dispositifs de stockage de l'électricité.