Présentation

Article

1 - MÉTHODES DU DIERS : UNE APPROCHE COHÉRENTE DES EMBALLEMENTS DE RÉACTIONS

  • 1.1 - Définition du scénario majorant
  • 1.2 - Caractérisation des systèmes réactionnels
  • 1.3 - Obtention des données expérimentales nécessaires au calcul d’évent

2 - BASES DU CALCUL D’ÉVENT POUR LE CONTRÔLE DES EMBALLEMENTS DE RÉACTIONS

3 - DIMENSIONNEMENT D’ÉVENTS POUR LES SYSTÈMES À FORTE PRESSION DE VAPEUR

4 - CONCLUSION

Article de référence | Réf : SE5041 v1

Conclusion
Calcul d’évents : méthodes du DIERS - Systèmes à forte pression de vapeur

Auteur(s) : Jean-Louis GUSTIN

Date de publication : 10 avr. 2006

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

RÉSUMÉ

Des évents de secours sont installés la plupart du temps sur les appareils ou capacités, comme les réacteurs, les colonnes à distiller, de l’industrie chimique, afin d’éviter leur explosion en cas de pressurisation accidentelle. Cependant, ces dispositifs ne permettent pas toujours de résister aux très fortes pressions générées par des emballements de réaction. Cet article présente des méthodes de calcul du dimensionnement de ces évents prenant en compte l’émission d’un rejet diphasique gaz/liquide.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

ABSTRACT

 

Auteur(s)

INTRODUCTION

Dans l’industrie chimique, la plupart des réacteurs et de nombreux appareils sont équipés d’un dispositif d’évent de secours pour éviter leur éclatement en cas de surpression accidentelle. Il est cependant peu fréquent que ces dispositifs d’évent présentent une capacité suffisante pour contrôler toutes les causes possibles de pressurisation. Le scénario de dimensionnement de ces évents n’a souvent pas ou peu de relation avec les réactions chimiques qui sont mises en œuvre dans le procédé. C’est notamment le cas dans les ateliers polyvalents où un même réacteur est utilisé pour la mise en œuvre de fabrications très différentes au cours de la vie de l’installation.

Les cas les plus fréquents de pressurisation accidentelle de réacteurs ou d’appareils sont les suivants :

  • surpression résultant d’un poussage à l’air ou à l’azote de mélange réactionnel liquide pour accélérer son transfert dans un autre appareil ;

  • incendie autour d’un réacteur entraînant une pressurisation excessive par pression de vapeur de solvants ;

  • pressurisation excessive par la pression de vapeur de solvants en raison d’un chauffage excessif ou de la perte du refroidissement sur un réacteur, une colonne de distillation ;

  • pressurisation excessive par suite du confinement accidentel d’un réacteur ou d’une capacité et de l’injection de liquide par une pompe ;

  • remplissage total d’un réacteur, d’une enceinte, d’une conduite isolée, par un liquide et dilatation thermique de ce liquide ;

  • pénétration accidentelle de fluide d’échange thermique dans une enceinte à la suite d’une fuite sur un échangeur interne.

Ces cas de pressurisation des enceintes conduisent à les protéger par des soupapes ou des disques de rupture. Les méthodes de dimensionnement proposées par l’American Petroleum Institute (API)   sont généralement utilisées. Ces méthodes de calcul sont basées sur le fait avéré que le rejet de ces évents est uniquement gazeux ou exceptionnellement liquide dans le cas de pressurisation par dilatation thermique de liquide ou par injection de liquide dans une enceinte. Ces évents sont également de surface relativement faible par rapport au volume de l’enceinte protégée.

Les évents dimensionnés pour protéger les réacteurs et autres équipements contre des pressurisations excessives résultant de l’emballement de réactions chimiques sont en général de surface beaucoup plus grande que les évents décrits précédemment. Cela peut être dû à la cinétique rapide de la réaction ou des réactions chimiques en cause, mais également au fait bien connu que le rejet de l’évent est dans ce cas un mélange diphasique de gaz ou de vapeurs et de mélange réactionnel liquide entraîné. Parfois, le rejet peut même être triphasique gaz / liquide / solide.

À l’extérieur des appareils, ce rejet diphasique gaz/liquide se traduit par l’émission d’un aérosol de mélange réactionnel qui peut être transporté par le vent à grande distance du point d’émission et qui finit par retomber sur le sol. Ce phénomène a été décrit dans le dossier Leçons des accidents majeurs dans l’industrie chimique faisant référence aux accidents de Seveso, Bhopal et Griesheim.

Le fait que le rejet de l’évent soit un fluide diphasique gaz/liquide n’est souvent pas lié à la violence de l’emballement de réaction, mais à des causes purement hydrodynamiques qui seront expliquées plus loin. Le dimensionnement de l’évent tient compte de la cinétique des réactions chimiques en cause, du type de pressurisation et du comportement hydrodynamique du rejet. La surface de l’évent dépend des réactions chimiques et donc du procédé considéré.

Cependant, on ne peut pas exclure que des évents de secours dimensionnés sur la base de scénarios de type API donnent lieu à l’émission de rejets diphasiques gaz/liquide si un emballement de réaction se produit dans l’enceinte sur laquelle ils sont installés. Des cas semblables sont précisément décrits dans le dossier Leçons des accidents majeurs dans l’industrie chimique.

Dans le présent dossier, nous allons présenter les méthodes de dimensionnement des évents pour le contrôle des emballements de réactions dans des réacteurs ou appareils de l’industrie chimique.

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-se5041


Cet article fait partie de l’offre

Sécurité et gestion des risques

(476 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

4. Conclusion

Les systèmes réactionnels à forte pression de vapeur représentent, sur une base statistique, 90 à 95 % de la demande en France pour le dimensionnement d’évents. Cette demande concerne des réacteurs déjà équipés d’évents dont il s’agit de justifier le dimensionnement ou la construction d’un nouveau réacteur pour un procédé qui, habituellement, fait l’objet d’une protection par évent de secours.

Les procédés concernés sont la fabrication de résines formo- phénoliques ou d’autres résines, des polymérisations diverses utilisant des monomères réactifs acryliques ou vinyliques, la fabrication de latex. Les sociétés américaines sont intéressées par le dimensionnement d’évents parce que, aux États-Unis, ces mêmes procédés font l’objet d’une protection par évent. Pour avoir une idée plus large des procédés susceptibles de recevoir une protection par évent de secours, on peut se reporter à l’article de J. C. Leung et H. K Fauske  donnant une liste de procédés concernés avec le scénario dimensionnant, le type de système réactionnel, la pression d’activation et la surface de l’évent pour 1 000 kg d’encours de réactifs.

En France, la demande de calculs d’évents, longtemps faible, est devenue beaucoup plus active par suite du renforcement de la réglementation et des contrôles touchant l’industrie chimique dans le cadre de la loi Seveso II.

HAUT DE PAGE

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Sécurité et gestion des risques

(476 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Conclusion
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) -   *  -  API 520 Parts I & II, Sizing, selection and installation of pressure relieving devices in refineries. Part I : Sizing and selection (1993-2000) Part II : Installation (1994).

  • (2) -   *  -  API 521, Guide for pressure relieving and depressurisation systems, American Petroleum Institute, Washington DC (1997).

  • (3) - FISHER (H. G.) -   DIERS, an overview of the program  -  . Loss Prevention Symposium, AIChE Houston National Meeting (1985).

  • (4) - GUSTIN (J. L.) -   *  -  Runaway reactions, their courses and the methods to establish safe process conditions : (1) Journal de physique, vol. 1, no 8, 1401-1419 (1991). (2) Ibid. European Section of the Society of Risk Analysis, Third Conference proceedings, 497-509, Paris déc. 16-18, 1991. (3) Ibid. Risk Analysis, 12 (4), 475-481 (1992). (4) GUSTIN (J. L.) Ablauf durchgehender. Reaktionen sowie Auswahl und Führung von sicheren Prozessen. Chem. Ing. Tech., 65 (4), 415-422 (1993).

  • (5) - GUSTIN (J. L.), FILLION (J.), TRÉAND (G.), EL BIYAALI (K.) -   The Phenol + Formaldehyde runaway reaction, vent sizing for reactor protection  -  . J. Loss Prev. Process Ind.,...

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Sécurité et gestion des risques

(476 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS