Présentation

Article

1 - CONTEXTE

2 - LIMITES DES MÉTHODES ACTUELLES POUR ÉVALUER LA SURPRESSION MAXIMALE DANS LE NUAGE EXPLOSIBLE

3 - MÉTHODE METEOR

4 - EXEMPLE D’APPLICATION À UN CAS D’ACCIDENTOLOGIE : TEXAS CITY, USA, 2005

5 - CONCLUSION

6 - GLOSSAIRE

7 - SIGLES

Article de référence | Réf : SE5082 v1

Conclusion
Évaluation univoque de la surpression d’une explosion de gaz

Auteur(s) : Lydia OUERDANE

Date de publication : 10 janv. 2020

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

RÉSUMÉ

Deux types de méthodes existent pour quantifier les surpressions d’une explosion de gaz à l’air libre, appelée UVCE (unconfined vapor cloud explosion) : les méthodes dites « simples » et les méthodes CFD (computational fluid dynamics). Les méthodes simples requièrent la connaissance de la surpression maximale d’explosion. La complexité du phénomène rend difficile le choix de cette surpression estimée dans la pratique de manière qualitative. Après quelques rappels sur les explosions, l’article présente la méthode METEOR dont le but est d'estimer de manière univoque la surpression maximale d’un UVCE. Un exemple d’application basé sur l’analyse d’un accident vient illustrer son principe.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

ABSTRACT

Univocal vapor cloud explosion overpressure assessment

Two types of methods enable assessment of unconfined vapor cloud explosion (UVCE) overpressures: “simple” methods (as the Multi-Energy method) and CFD methods (Computational Fluid Dynamics). Simple methods generally require the knowledge of the maximum explosion overpressure generated in the cloud as an input. The complexity of the phenomenon makes the choice of this overpressure difficult. In practice, it's estimated qualitatively which could lead to inconsistent results. After reminders on explosions, this article presents the METEOR method that aims at estimating coherently an univocal maximum UVCE overpressure. An example based on the analysis of an accident illustrates its principle.

Auteur(s)

  • Lydia OUERDANE : Ingénieur en sécurité industrielle – Spécialiste en phénomènes dangereux - Département Expertise & Modélisation, TechnipFMC, Paris La Défense, France

INTRODUCTION

Dans le cadre d’un projet industriel, une évaluation du risque d’explosion de gaz à l’air libre (UVCE – unconfined vapor cloud explosion) est réalisée pour analyser les conséquences sur l’homme et définir les contraintes de dimensionnement des installations et/ou des équipements. Différentes approches ou méthodes peuvent être utilisées allant de méthodes dites « simples » et rapides d’utilisation (méthode Multi-Énergie par exemple) à des approches plus complexes de type CFD (computational fluid dynamics).

En pratique, la méthode Multi-Énergie s’est imposée comme l’une des méthodes de référence pour modéliser les explosions de gaz. Elle évalue de manière « simple » les conséquences potentielles d’une explosion de gaz en milieu non confiné. Néanmoins, elle nécessite de fixer, en tant que donnée d’entrée, la surpression maximale générée par l’explosion. À ce jour, il n’existe pas de méthode pratique pour définir cette surpression de façon univoque. Des outils de modélisation CFD peuvent permettre d’évaluer précisément un profil de surpression. Cependant, leur mise en œuvre se révèle assez lourde.

Une méthode, nommée METEOR (method to evaluate overpressure), d’aide à la décision de la surpression maximale d’explosion dans des unités industrielles a été développée pour aider l’analyste à fixer la surpression maximale générée par l’explosion. Il s’agit d’une méthode intermédiaire située entre l’utilisation de méthodes dites « simples » sur le principe mais difficile à mettre en œuvre en pratique (GAME, etc.) et la CFD.

Elle repose sur des calculs d’explosion CFD, l’analyse d’essais et d’accidentologies, sur certaines méthodologies semi-empiriques (GAME, CAM, etc.) et sur des avis d’experts.

La méthode a pour but de permettre une évaluation cohérente et univoque des niveaux de surpression d’explosion à retenir pour l’application de la méthode Multi-Énergie. Elle peut être mise en œuvre aussi bien dans des analyses de risques réglementaires (par exemple dans le cadre des études de dangers (EDD) demandées par la réglementation française) mais aussi sur des projets d’ingénierie.

Cet article présente le principe et les différentes étapes de la méthode METEOR. Préalablement, le contexte de quantification des effets d’une explosion de gaz et les limites des méthodes actuelles pour évaluer la surpression maximale dans le nuage explosible sont rappelées. Un exemple d’application fondé sur un cas d’accidentologie et la comparaison aux résultats d’investigation associés à ce dernier viennent ensuite illustrer l’utilisation de la méthode.

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

KEYWORDS

explosion   |   UVCE   |   Overpressure   |   Multi-Energy Method   |   Univocality

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-se5082


Cet article fait partie de l’offre

Sécurité et gestion des risques

(476 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation

5. Conclusion

La méthode METEOR mise en place et implémentée dans un outil permet d’évaluer la surpression maximale dans le nuage explosible d’un UVCE. Elle a pour objectif d’aider à fixer un indice de sévérité dans l’utilisation de la méthode Multi-Énergie et de fournir des résultats cohérents et univoques d’un cas d’étude à un autre.

METEOR vient combler un manque de méthode « simple » d’utilisation et robuste qui permet de justifier des indices de sévérité retenus pour la méthode Multi-Énergie. METEOR est un système expert combinant des corrélations et des démarches cognitives d’experts (étapes guidant l’ingénieur pour estimer la congestion via des catégories de congestion ou des cas d’encombrement de référence, etc.) qui prennent en compte les principaux paramètres d’influence de l’explosion.

Les tests de vérification et de validation réalisés montrent que des résultats cohérents sont obtenus par rapport aux cas d’explosion et aux essais expérimentaux recensés. En effet, les surpressions obtenues sont conservatives ; elles présentent un ordre de grandeur et une tendance corrects. Il pourra être noté qu’une correspondance est observée entre la catégorisation de congestion établie et la classification de congestion d’essais expérimentaux.

METEOR constitue un outil d’aide à la décision qui peut être utilisé par un ingénieur non spécialiste en phénoménologie d’explosion ayant connaissance du champ d’application et des limites d’utilisation. Dans certaines configurations, l’avis d’un spécialiste ou expert reste nécessaire. C’est le cas des zones semi-confinées où il est difficile d’arbitrer sur la surpression maximale dans l’unité (entrepôts de stockage, etc.).

Des cas spécifiques d’étude pourront être traités avec METEOR au cas par cas par l’ingénieur, suivant l’objectif de l’étude pour laquelle cette analyse est menée et le niveau de précision voulu.

METEOR est une méthode qui se veut évolutive afin de pouvoir y intégrer de futurs développements et avancées méthodologiques dans le domaine des UVCE.

HAUT DE PAGE

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Sécurité et gestion des risques

(476 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Conclusion
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - UK HEALTH AND SAFETY EXECUTIVE -   Buncefield Explosion Mechanism Phase 1.  -  Volume 1 and 2. RR718 (2009).

  • (2) - JOHNSON (D.M.) -   Characteristics of the Vapour Cloud Explosion Incident at the IOC Terminal in Jaipur.  -  29th October 2009. GL Noble Denton, Report Number : 11510 (2011).

  • (3) - MOUILLEAU (Y.), LECHAUDEL (J.F.) -   Guide des méthodes d’évaluation des effets d’une explosion de gaz à l’air libre.  -  INERIS DRA – YMo/YMo – 1999 – 20433 (1999).

  • (4) - DAUBECH (J.) -   Formalisation du savoir et des outils dans le domaine des risques majeurs (EAT-DRA-76) – Omega UVCE – Les explosions non confinées de gaz et de vapeurs.  -  INERIS-DRA-16-133610-06190A (2016).

  • (5) - PETIT (J.M.), POYARD (J.L.) -   Les mélanges explosifs – Partie 1 : gaz et vapeurs.  -  INRS, ED 911 (2004).

  • ...

1 Outils logiciels

FLACS® – Flame Acceleration Simulator.

Gexcon AS Fantoftvegen 38 N-5892 Bergen, Norvège

http://www.gexcon.com

HAUT DE PAGE

2 Sites Internet

ARIA (analyse, recherche et information sur les accidents)

Base de données de l’accidentologie industrielle et technologique

https://www.aria.developpement-durable.gouv.fr/

CSB – CSB Safety Video : « Anatomy of a disaster – Explosion at BP Texas City Refinery »

http://www.csb.gov

HAUT DE PAGE

3 Événements

Journée d’information sur le thème « Maîtrise du risque d’explosion ». Département Expertise & Modélisation, TechnipFMC Centre de Paris, 5 juin 2018 à Vaux-en-Velin.

Journée technique VCE / (U)VCE (Unconfined) Vapour Cloud Explosion. TOTAL–INERIS, 5 avril 2019 à Bougival.

HAUT...

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Sécurité et gestion des risques

(476 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS