La catalyse d'oxydation occupe une place de choix dans les procédés de dépollution. Elle permet de travailler dans des conditions plus douces de température et de pression pour atteindre des niveaux élevés de conversion des polluants.
Les pots catalytiques automobiles (ou convertisseurs) sont un exemple très démonstratif de ce qu'il est possible de faire dans ce domaine. La mise en œuvre de ces pots a tout d'abord été réalisée dans la ligne d'échappement des moteurs à essence. Le procédé « trois-voies » permet sur un seul catalyseur d'abaisser les teneurs des trois polluants majeurs (CO, HC, NOx) au-dessous des teneurs fixées par les normes de l'Union Européenne. Ce procédé est mature et les progrès attendus viendront de la durabilité des matériaux employés dans le convertisseur, les constructeurs visant une longévité égale ou supérieure à 240 000 km. La situation est très différente pour les moteurs fonctionnant en mélange pauvre (c'est-à-dire en excès d'air) : moteur Diesel ou moteur à essence « pauvre ». Le gaz d'échappement étant très oxydant, la réduction des oxydes d'azote y est complexe et représente un défi pour la chimie. Les solutions envisagées sont la réduction par l'ammoniac (issue de l'hydrolyse de l'urée) ou des systèmes de pièges à NOx fonctionnant en régime transitoire. Dans tous les cas, si on inclut le filtre à particules, pas moins de trois pots en série sont nécessaires, ce qui rend la dépollution de ces moteurs à la fois coûteuse et complexe. Les progrès attendus viendront de la compacité de ces systèmes en cherchant à placer plusieurs catalyseurs dans le même pot de façon à se rapprocher du système « idéal » rencontré dans les moteurs à essence (un seul pot). En parallèle, les progrès sur la durabilité des matériaux sont d'actualité puisque la même exigence existe pour ces systèmes implantés dans l'échappement Diesel (240 000 km).
La catalyse d'oxydation est également présente dans les procédés de traitement de l'air et de l'eau en station fixe. Néanmoins, les procédés catalytiques ne sont pas aussi développés que dans le secteur automobile probablement parce qu'il existe des procédés alternatifs plus simples et réputés moins coûteux. L'élimination des COV de l'air est certainement le procédé qui se prête le mieux à un traitement catalytique. Les matériaux utilisés sont très semblables à ceux que l'on rencontre dans les pots catalytiques avec une prédominance des catalyseurs à base de métaux nobles (Pt, Pd). Les progrès attendus dans ce domaine sont du même ordre qu'en catalyse automobile avec une durabilité accrue des matériaux et surtout l'abaissement du coût du catalyseur en substituant les métaux nobles par des oxydes meilleur marché. Dans ce domaine, les pérovskites de type LaMnO3 ou LaCoO3 (ou les combinaisons ternaires et quaternaires des différents cations) occupent une place de choix. La catalyse est encore peu présente dans les procédés d'oxydation des polluants de l'eau (oxydation « voie humide » ou OVH). Les procédés classiques (adsorption, oxydation biologique, oxydation chimique non catalysée, incinération...) sont toujours très largement utilisés. Les procédés OVH catalysés sont actuellement réservés au traitement d'effluents industriels à pollution bien ciblée. Une des raisons à cet état de fait est la faible stabilité des catalyseurs en milieu aqueux. Les progrès attendus viendront là également de l'amélioration de la tenue des matériaux dans l'eau lors des traitements.
Comme il est d'usage dans ce milieu professionnel, les pourcentages ou teneurs de composé indiqués dans ce texte, sont sauf précision contraire, massiques.