Présentation

Article

1 - MATÉRIAUX ÉLECTROLUMINESCENTS

2 - DURÉE DE VIE

3 - APPLICATIONS EN VISUALISATION

4 - RÉALISATIONS INDUSTRIELLES

5 - CONCLUSION

Article de référence | Réf : N407 v1

Matériaux électroluminescents
Électroluminescence des matériaux organiques. Technologies

Auteur(s) : Pierre LE BARNY

Date de publication : 10 mai 2006

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

RÉSUMÉ

Les matériaux organiques électroluminescents apparaissent particulièrement prometteurs pour une nouvelle technologie d’afficheurs. Il est même possible d’en améliorer les rendements lumineux en dopant les couches émettrices. Cet article se focalise sur les polymères électroluminescents, ainsi que sur les molécules de faible masse molaire. Sont présentés les causes identifiées de leur dégradation et leurs remèdes, puis les problèmes d’adressage et de réalisation d’un écran couleur dans le cas des OLED (Organic Light Emitting Diode). Les performances des afficheurs et des microdispositifs sont ensuite exposées pour leurs différentes applications.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

ABSTRACT

 

Auteur(s)

  • Pierre LE BARNY : Groupe composants optiques et systèmes sécuritaires - Thales Research and Technology – France

INTRODUCTION

Des matériaux aux systèmes de visualisation commercialisés

Dans le premier dossier , nous avons exposé les principes de base qui gouvernent l’électroluminescence en insistant sur les mécanismes d’injection de transport et de recombinaison des charges. Nous avons vu également comment il était possible d’améliorer les rendements lumineux, en particulier en dopant les couches émettrices et en mettant à profit la phosphorescence de certains complexes organométalliques.

Dans ce second dossier, nous présentons les différents matériaux utilisés en électroluminescence organique (polymères et molécules de faible masse molaire) en insistant dans le cas des polymères sur les efforts faits pour développer des voies de synthèse adaptées. Puis, nous discutons les problèmes liés au vieillissement des structures. Nous exposons ensuite la problématique de l’adressage et de l’obtention de la pleine couleur dans le cas des OLED (Organic Light Emitting Diode). Enfin, nous décrivons les performances des différents afficheurs commercialisés à ce jour ainsi que celles des démonstrateurs les plus avancés techniquement.

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-n407


Cet article fait partie de l’offre

Matériaux fonctionnels - Matériaux biosourcés

(205 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation

1. Matériaux électroluminescents

D’une manière générale, les matériaux électroluminescents EL de l’art (molécules de faible masse molaire ou polymères), tentent d’allier :

  • un bon rendement de photoluminescence à l’état solide ;

  • de bonnes propriétés de transport des charges (mobilité des porteurs élevée).

Dans les cas des molécules de faible masse, il est possible d’obtenir des rendements de photoluminescence importants à l’état solide par dopage des couches émettrices (cf. []). Les polymères quant à eux ne sont en général pas dopés ; certains d’entre eux peuvent présenter des rendements de fluorescence élevés. Ainsi le poly[2-(diméthyloctylsilyl)-1,4-phénylènevinylène] (DMOS-PPV) et le poly[9,9-bis(méthoxyéthoxyéthyl)fluorène] (BDOH-PF) (figure 1) ont des rendements η PL respectivement égaux à 60 % et 73 %.

La mobilité des porteurs quant à elle reste modeste et est comprise entre 10–6 et 10–3 cm2 × V–1 × s–1.

Les matériaux électroluminescents doivent de surcroît pouvoir former facilement des films minces. Cela implique :

  • pour les molécules de faible masse molaire d’être capables de se sublimer par chauffage sous un vide inférieur à 10–4 Pa sans subir de décomposition thermique ;

  • et pour les polymères d’être solubles dans les solvants organiques usuels afin d’être déposés par centrifugation (spin-coating) sur le substrat choisi ou par la technique jet d’encre.

Pour accéder aux afficheurs couleur, il est nécessaire de disposer de matériaux électroluminescents efficaces dans le bleu, le vert et le rouge avec un spectre d’émission aussi étroit que possible. Dans le cas des polymères conjugués, celui-ci peut être modifié par des phénomènes d’agrégation qui conduisent à la formation d’excimères émettant à des longueurs d’onde supérieures à celles supposées. Afin d’éviter la formation d’agrégats, il est possible d’encombrer le chromophore en incorporant des substituants très volumineux de manière à repousser...

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Matériaux fonctionnels - Matériaux biosourcés

(205 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Matériaux électroluminescents
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - CHEN (C.H.), SHI (J.), TANG (C.W.) -   *  -  Macromol. Symp., 125, 1-48 (1997).

  • (2) - MARTIN (R.E.), GENESTE (F.), HOLMES (A.B.) -   *  -  CR Acad. Sci. Paris t. 1, série IV pp. 447-470 (2000).

  • (3) - WEINFURTNER (K.H.), WEISSÖRTEL (F.), HARMGARTH (G.), SALBECK (J.) -   *  -  Proc. SPIE, 3476, 40-48 (1998).

  • (4) - SANO (T.), FUJII (T.), NISHIO (Y.), HAMADA (Y.), SHIBATA (K.), KUROKI (K.) -   *  -  Jpn. J. Appl. Phys., 36(6A), Part 1, 3124 (1995).

  • (5) - KIDO (J.), SHIONOYA (H.), NAGAI (K.) -   *  -  Appl. Phys. Lett., 67(16), 2281-2283 (1995).

  • (6) - JIANG (J.), JIANG (C.), YANG (W.), ZHEN (H.), HUANG (F.), CAO (Y.) -   *  -  Macromolécules, 38, 4072-4080 (2005).

  • ...

1 Production

L’industrie des OLED est maintenant une réalité. Il y a une vingtaine de sites de production dans le monde qui appartiennent à

Pioneer, RiTDisplay, Samsung SDI, TDK, Sanyo/Kodak(AM), Teco, Univision, Ness pour les molécules évaporées et Delta Optronics, DuPont/RiT display, Osram pour les polymères.

On estime à :

  • 20 millions le nombre d’afficheurs à matrice passive vendus en 2003 ;

  • 2 millions le nombre d’afficheurs à matrice active vendus en 2003 ;

ce qui représente un chiffre d’affaire de 219 millions de dollars.

Les parts du marché se répartissent de la manière suivante :

  • 33,9 % Pioneer ;

  • 36,7 % RiT Display ;

  • 28,2 % SNMD Samsung, Nec, Mobile displays.

HAUT DE PAGE

2 Fournisseurs

(liste non exhaustive)

Il faut distinguer le cas des molécules évaporées de celle des polymères.

Molécules évaporées

Un certain nombre de molécules évaporées sont dans les catalogues classiques de chimie fine (Aldrich, Lancaster,…).

D’autres molécules sont vendues spécifiquement par certaines sociétés comme :

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Matériaux fonctionnels - Matériaux biosourcés

(205 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS