Chacun a vu une fois au moins un plan de métro, une carte de lignes ferroviaires ou aériennes, un plan électrique ou un circuit électronique ; ainsi, tout le monde sait plus ou moins intuitivement ce qu’est un graphe. Toutefois, entre la vague notion d’un schéma incluant des « points » et des « trajets » unissant ces points et la théorie mathématique des graphes, il y a une longue élaboration des concepts, et en particulier le choix d’une terminologie.
Un graphe n’est pas a priori autre chose qu’un ensemble fini de « points » (ses « sommets ») reliés par des « traits » ou des « flèches » (ses « arêtes »).
Nous trouvons aussi des graphes dans deux activités de l’ingénieur : les diagrammes fonctionnels et les problèmes d’ordonnancement des tâches.
On comprendra mieux l’apparition des graphes dans ce dernier problème par un exemple (figure 1). Supposons que cinq équipes de football nommées AB, OR, LF, DT, PZ jouent dans un tournoi. A un certain moment, les matchs joués ont été les suivants :
AB-OR 1-0AB-DT 0-0
AB-LF 1-2OR-PZ 0-0
LF-DT 1-1PZ-DT 2-0
On peut modéliser l’ensemble de ces matchs de manière graphique, comme on le voit dans la figure 1. L’information sur les résultats des matchs n’a pas été reportée, on pourrait l’attacher aux traits (« arêtes » : ce sont les matchs) qui unissent les « sommets » (qui sont ici les équipes). Grâce à cette représentation, on perçoit d’emblée un certain nombre de faits, par exemple le nombre d’équipes en retard.
On trouve aussi une situation de théorie des graphes avec le réseau Internet, dans lequel les sommets sont les fichiers (ou leurs adresses) et les arcs sont les liens entre ces documents.
Un dernier exemple, très différent, peut être trouvé avec la modélisation financière des systèmes internationaux de droits de douane et taxes diverses.
La théorie des graphes est un sujet d’étude relativement récent en Mathéma-tiques. Le texte le plus ancien semble être dû à Euler, en 1736 (dans le problème des ponts de Königsberg, il s’agissait de parcourir les sept ponts sur la rivière Pregel une et seule fois chacun), et le suivant à Monge, en 1781 (à propos d’un problème de déplacement de terre de déblai et de remblai). On remarque ensuite les contributions de Kirkman et Hamilton en 1856 au sujet des parcours désormais appelés chemins hamiltoniens. Mais c’est vers la fin du XIXe siècle, avec Cayley, que la théorie des graphes commença à prendre son essor et à fixer sa terminologie.
Du fait de cette jeunesse, le développement théorique, la mise au point des algorithmes, le choix d’une terminologie ne sont pas entièrement achevés. On trouvera, dans cet article, un exposé de quelques méthodes et applications importantes de la théorie des graphes. Le lecteur trouvera tout le nécessaire pour compléter son information en compulsant les ouvrages fondamentaux de Claude Berge, bien que ceux-ci soient très orientés vers la Combinatoire. Les besoins plus spécifiques de l’Algorithmique sont développés dans des ouvrages plus récents qui sont également cités en bibliographie.
Terminons en signalant que la théorie des graphes est parfois «classée » comme sous-discipline de l’Informatique théorique (en anglais « computer science ») en raison de l’importance des algorithmes, parfois comme sous-discipline des Mathématiques en raison de sa proximité avec la Combinatoire. En réalité, la théorie des graphes se trouve « à la croisée des chemins », entre Mathématiques, Recherche opérationnelle, Informatique et Gestion des réseaux de distribution ou de transport, s’appliquant aussi bien en économie, biologie ou en psychologie.