Points clés
Domaine : apprentissage artificiel et gestion du trafic aérien
Degré de diffusion de la technologie : croissance
Contact : [email protected]
L’apprentissage artificiel est un domaine scientifique en plein essor. Avec l’émergence de données massives (big data), il est devenu un outil indispensable pour pouvoir extraire de ces données des informations utiles ou des modèles de prévision, dans de nombreux domaines d’application.
Le domaine de l’apprentissage peut parfois paraître aux yeux du néophyte comme une véritable jungle, obscure et peu accessible. Le présent article ne prétend en aucun cas l’explorer exhaustivement, ni même superficiellement. L’objectif est de fournir au lecteur un point d’entrée et quelques outils (une machette, pour continuer notre analogie), pour pouvoir ensuite explorer par lui-même ce domaine, par des lectures spécialisées. Parmi les ouvrages de référence, citons les livres de T. Hastie et al. , celui de C. Bishop , et en français l’ouvrage de A. Cornuejols et L. Miclet .
Cette introduction à l’apprentissage artificiel est illustrée par deux applications à des problèmes de gestion du trafic aérien.
Dans la première, le modèle de prévision de la charge de travail des contrôleurs aériens (« aiguilleurs du ciel ») présenté est un réseau de neurones, appris à partir d’enregistrements de trajectoires d’avions et d’archives d’ouvertures de secteurs de contrôle. Une fois appris, ce modèle est combiné à une méthode de recherche arborescente pour prévoir les configurations optimales d’ouvertures de secteurs de contrôle aérien.
Dans la seconde application, l’apprentissage artificiel peut être utilisé soit pour prévoir directement l’altitude d’un avion en montée, soit pour estimer certains paramètres du modèle physique de l’avion, non disponibles dans les prédicteurs au sol, afin d’améliorer cette prévision d’altitude. Les éléments présentés dans cet article sont détaillés de façon plus approfondie dans .