Présentation

Article

1 - SPÉCIFICITÉS ET AVANTAGES DE LA MAGNÉTO-OPTIQUE

2 - DISPOSITIFS NON RÉCIPROQUES

3 - MODULATEUR

4 - DÉFLECTEUR

5 - IMAGERIE DES DOMAINES MAGNÉTIQUES

6 - CAPTEURS MAGNÉTO-OPTIQUES

7 - MÉMOIRES MAGNÉTO-OPTIQUES

8 - DISPOSITIFS D’AFFICHAGE ET SYSTÈMES D’IMPRESSION MAGNÉTO-OPTIQUES

9 - INTERACTIONS ONDES OPTIQUES – ONDES MAGNÉTOSTATIQUES EN MAGNÉTO-OPTIQUE INTÉGRÉE

10 - CONCLUSION

11 - GLOSSAIRE

| Réf : E1962 v2

Dispositifs d’affichage et systèmes d’impression magnéto-optiques
Application de la magnéto-optique

Auteur(s) : Jacques FERRE

Date de publication : 10 avr. 2016

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

NOTE DE L'ÉDITEUR

Cet article est la réédition actualisée de l’article E1962 intitulé « Application de la magnéto-optique» paru en 1997, rédigé par Jean-Paul CASTÉRA.

25/04/2016

RÉSUMÉ

Cet article présente tout d’abord les spécificités et avantages de la magnéto-optique, ainsi que ses nombreuses applications. Les dispositifs magnéto-optiques utilisés les plus couramment (isolateurs, circulateurs, modulateurs, déflecteurs, pour l’imagerie…) sont décrits. Les progrès en nanosciences (nano-optique, nano-magnétisme, nanomatériaux et nano-structuration) doivent permettre l’intégration de nombreuses fonctions dans des dispositifs miniaturisés reposant sur des disciplines émergentes : la magnéto-photonique et la magnéto-plasmonique. De nouvelles opportunités sont aussi ouvertes en microscopie magnéto-optique appliquée aux sciences des matériaux et à l’étude de systèmes magnétiques nanostructurés destinés, en particulier, à l’électronique de spin.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

ABSTRACT

Applications in magneto-optics

In this article the specificities and advantages of magneto-optics are first stated, justifying their use for applications in many areas. The most usual magneto-optical devices (isolators, circulators, modulators, deflectors, for imaging…) are described. The nano-science outburst (in nano-optics, nano-magnetism, nano-materials and nano-patterning) might allow the integration of many functions in miniaturized devices through emergent disciplines, the magneto-photonics and magneto-plasmonics. New opportunities are also opened in magneto-optical microscopy in material science, and for studying magnetic nanostructured systems, especially devoted to spin electronics.       

Auteur(s)

  • Jacques FERRE : Ingénieur ESPCI, Directeur de Recherche Émérite au CNRS Laboratoire de Physique des Solides, CNRS, Université Paris-Sud-Saclay, Orsay, France

INTRODUCTION

L’interaction entre une onde optique et un milieu magnétique conduit à une grande diversité d’effets mentionnés dans l’article [E1960] consacré aux effets et matériaux magnéto-optiques. Les effets Faraday et Kerr magnéto-optiques sont couramment utilisés pour effectuer des mesures vectorielles très sensibles de l’aimantation et pour réaliser des observations microscopiques en magnétisme. Grâce à leur résolution spatiale et temporelle exceptionnelles, elles permettent une imagerie dynamique des domaines magnétiques. Désormais, ces techniques sont couramment employées pour tester des dispositifs, en particulier ceux qui relèvent de l’électronique de spin.

Les applications de la magnéto-optique couvrent de nombreux domaines : télécommunications optiques, stockage de l’information, mémoires, visualisation et capteurs. Ainsi, l’utilisation de dispositifs non réciproques miniaturisés, tels que les isolateurs ou les circulateurs, permettent, par analogie avec les systèmes hyperfréquences guidés [E 3330] [E 3331] [E 3336] de remplir de nouvelles fonctions reposant sur des liaisons optiques.

La conception et la miniaturisation des dispositifs proposés ont évolué rapidement grâce aux progrès réalisés dans le secteur des lasers et des moyens informatiques. Elles ont bénéficié de l’émergence et de la maîtrise de nouveaux matériaux artificiels comme les structures en couches ultra-minces, les nanostructures magnétiques et les cristaux magnéto-photoniques. La magnéto-optique intéresse aussi le secteur du contrôle non destructif et s’avère être un outil d’investigation très puissant en physique des solides.

Pour le stockage des données, après des recherches intensives menées sur les mémoires adressables et réinscriptibles par balayage optique, le disque magnéto-optique s’est imposé sur plusieurs créneaux de la péri-informatique et de l’audio grand public.

La rotation Faraday dans les grenats ferrimagnétiques a également été exploitée dans des écrans de visualisation ou pour réaliser des modulateurs de lumière pour imprimantes. Les effets magnéto-optiques dans les fibres optiques ou dans les grenats ferrimagnétiques ont été mis à profit pour la mesure des courants forts et en magnétométrie.

Ces techniques magnéto-optiques seront de plus en plus exploitées au niveau industriel, compte tenu des progrès réalisés pour miniaturiser les dispositifs et de la course à la rapidité de lecture d’informations.

Dans cet article, les spécificités et avantages de la magnéto-optique sont d’abord précisés, justifiant l’intérêt de cette discipline dans de nombreux secteurs. Les dispositifs magnéto-optiques les plus courants (isolateurs, circulateurs, modulateurs, déflecteurs, pour l’imagerie…) sont ensuite décrits, puis les apports incontournables de deux disciplines récentes, la magnéto-photonique et la magnéto-plasmonique sont discutés dans le but de concevoir et de réaliser des dispositifs magnéto-optiques.

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

KEYWORDS

optics   |   sensors   |   electronics   |   magneto-optics   |   devices   |   memories

VERSIONS

Il existe d'autres versions de cet article :

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v2-e1962


Cet article fait partie de l’offre

Électronique

(243 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

8. Dispositifs d’affichage et systèmes d’impression magnéto-optiques

Les grenats ferrimagnétiques substitués par des ions bismuth, BiYIG, présentant des rotations Faraday et des facteurs de mérite très élevées dans le domaine visible, ont permis de visualiser directement une configuration magnétique stockée et des composants mémoires pour systèmes d’affichage. Le principe de fonctionnement de ces dispositifs est représenté figure 17. L’information à visualiser correspond dans la couche magnéto-optique à un domaine magnétique (ou à un ensemble de domaines) d’une polarité donnée perpendiculaire au plan de la couche, le reste de la couche étant aimanté dans l’autre direction. Quand une lumière polarisée linéairement traverse le grenat, la direction de polarisation des faisceaux correspondant à l’information et au reste de la couche (le fond) tourne dans des directions opposées. Si l’analyseur est réglé de manière à bloquer la lumière correspondant à l’une des directions de l’aimantation (par exemple le fond), alors la lumière correspondant à l’autre direction (information) est transmise à cause de l’effet Faraday. Le maximum de transmission ne dépend que du facteur de mérite de la couche magnéto-optique. À une longueur d’onde de 570 nm, valeur pour laquelle le facteur de mérite, Q, d’une couche mince de grenat de fer et de Sm substitué au Ga et au Bi, SmGaBiIG, est maximal, le contraste atteint 180:1 entre les états ON et OFF. Pour une épaisseur de 12 μm, sa transmission vaut 5,1 % et sa rotation Faraday atteint 30 000°/cm, donnant Q = 6,3°/dB. Dans les dispositifs usuels, le contraste chute à 20 : 1. Cela provient de l’emploi de lumière blanche, compte tenu de la variation de la rotation Faraday avec la longueur d’onde.

8.1 Technologies

Pour former l’image magnétique, deux techniques sont utilisées.

  • La première découle des nombreux travaux effectués sur les mémoires à bulles magnétiques dans les couches minces de grenat. Les bulles sont des domaines magnétiques...

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Électronique

(243 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Dispositifs d’affichage et systèmes d’impression magnéto-optiques
Sommaire
Sommaire

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Électronique

(243 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS