Quizzed article | REF: AF1530 V1

Mathematical Finance : Asset Pricing

Author: Emmanuel LÉPINETTE

Publication date: February 10, 2022, Review date: December 22, 2023 | Lire en français

You do not have access to this resource.
Click here to request your free trial access!

Already subscribed? Log in!

Automatically translated using artificial intelligence technology (Note that only the original version is binding) > find out more.

    A  |  A

    Overview

    ABSTRACT

    This article presents the classical theory of asset pricing for financial derivatives. Moreover, the Black and Scholes model and, more generally local volatility models, are defined from Brownian motions that we introduce. Numerical procedures to compute prices are provided with Python scripts. At last, a new approach in discrete time is presented that avoids the risk neutral probability measures.

    Read this article from a comprehensive knowledge base, updated and supplemented with articles reviewed by scientific committees.

    Read the article

    AUTHOR

    • Emmanuel LÉPINETTE: Lecturer at Ceremade, UMR CNRS 7534 - Université Paris Dauphine, PSL, Paris, France

     INTRODUCTION

    The Bachelier World Congress has been organized every two years by the Bachelier Finance Society since 2000. This conference is a must-attend meeting place for leading specialists in financial mathematics. It bears the name of Louis Bachelier, a French mathematician who is credited with the birth of a new field of mathematics, applied to finance, by introducing random walks to model prices, even before the mathematical foundations of probability theory had been definitively laid. However, before Bachelier, it seems that Jules Regnault, a stockbroker on the Paris Bourse, was the first to propose modeling price variations using random walks in his work Calculation of chances and philosophy of the award (see ).

    March 29, 1900, Louis Bachelier defended his doctoral thesis, supervised by Henri Poincaré. The originality of his work lies in the use of Brownian motion for the first time to model variations in the price of a financial asset. Brownian motion takes its name from a Scottish botanist, Richard Brown, who observed the agitation of pollen particles suspended in water. A little later, in 1905, Einstein and Jean Perrin use Brownian motion to estimate the Avogadro number .

    American mathematician...

    You do not have access to this resource.

    Exclusive to subscribers. 97% yet to be discovered!

    You do not have access to this resource.
    Click here to request your free trial access!

    Already subscribed? Log in!


    The Ultimate Scientific and Technical Reference

    A Comprehensive Knowledge Base, with over 1,200 authors and 100 scientific advisors
    + More than 10,000 articles and 1,000 how-to sheets, over 800 new or updated articles every year
    From design to prototyping, right through to industrialization, the reference for securing the development of your industrial projects

    KEYWORDS

    Black and Scholes model   |   stochastic calculus   |   Ito integral   |   arbitrage opportunity   |   local volatility   |   european call


    This article is included in

    Mathematics

    This offer includes:

    Knowledge Base

    Updated and enriched with articles validated by our scientific committees

    Services

    A set of exclusive tools to complement the resources

    Practical Path

    Operational and didactic, to guarantee the acquisition of transversal skills

    Doc & Quiz

    Interactive articles with quizzes, for constructive reading

    Subscribe now!

    Ongoing reading
    Financial mathematics: valuation of derivatives