Présentation
EnglishRÉSUMÉ
La théorie classique d'évaluation du prix d’un produit dérivé est ici présentée. De plus, le modèle de Black et Scholes et, plus généralement, les modèles à volatilité locale, qui sont construits à partir d’un mouvement brownien, sont présentés. Des procédures numériques d’évaluation sont exposées avec le code en Python. Enfin, on présente une nouvelle approche qui se passe de la notion de probabilité de risque neutre en temps discret.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Emmanuel LÉPINETTE : Enseignant-chercheur au Ceremade, UMR CNRS 7534 - Université Paris Dauphine, PSL, Paris, France
INTRODUCTION
Le congrès international Bachelier World Congress est organisé tous les deux ans par la Bachelier Finance Society depuis l’année 2000. Cette conférence est un rendez-vous incontournable où se rencontrent les meilleurs spécialistes des mathématiques financières. Elle porte le nom de Louis Bachelier, mathématicien francais, à qui l’on attribue la naissance d’un nouveau domaine des mathématiques, appliquées à la finance, en introduisant les marches aléatoires pour modéliser les prix, avant même que les fondations mathématiques de la théorie des probabilités soient définitivement fixées. Toutefois, avant Bachelier, il semble que Jules Regnault, agent de change à la Bourse de Paris, soit le premier à proposer de modéliser les variations des prix par des marches aléatoires dans son ouvrage Calcul des chances et philosophie de la bourse (voir ).
Le 29 mars 1900, Louis Bachelier soutient sa thèse de doctorat, dirigée par Henri Poincaré. L’originalité de ses travaux réside dans l’utilisation du mouvement brownien pour la première fois afin de modéliser les variations des prix d’un actif financier. Le mouvement brownien tire son nom d’un botaniste écossais, Richard brown, qui observait l’agitation de particules de pollen en suspension dans l’eau. Un peu plus tard en 1905, Einstein et Jean Perrin utiliseront le mouvement brownien afin d’estimer le nombre d’Avogadro .
C’est le mathématicien américain Norbert Wiener qui donne entre 1920 et 1924 une définition mathématique rigoureuse à cet objet mathématique qu’est le mouvement brownien, qu’on appelle également processus de Wiener. Il s’agit d’une loi (de variable aléatoire) dont les valeurs possibles sont des trajectoires continues dépendant du temps t ≥ 0 et dont les variations , sont indépendantes du passé (avant t 1) et normalement distribuées. Précisément, est une gaussienne d’espérance nulle et de variance σ 2(t 2 − t 1) où σ > 0 est fixé.
L’essor des mathématiques financières n’a lieu véritablement que 70 ans plus tard. En 1973, l’article de Black et Scholes et les travaux de Merton constituent le socle fondateur de la finance quantitative, telle qu’on la connaît aujourd’hui. En 1997, le prix Nobel sera décerné à Scholes et Merton seulement, Black étant malheureusement décédé en 1995. Le modèle de Black et Scholes est clairement le modèle le plus connu des spécialistes de la finance et est largement utilisé dans l’industrie bancaire. Ce modèle, et surtout l’approche qui y est développée, sont devenus un standard pour des modèles plus sophistiqués et marquent un tournant décisif dans le développement des mathématiques financières. Il suffit de regarder des trajectoires simulées du mouvement brownien géométrique, tel qu’il est utilisé dans le modèle de Black et Scholes pour modéliser la dynamique des prix d’un actif financier, et de le comparer à l’allure des courbes de prix d’actions en bourse, pour comprendre ce choix de modélisation.
Les travaux de Black, Scholes et Merton constituent la seconde révolution après ceux de Bachelier dans le monde des mathématiques financières. On n’oublie pas non plus la théorie en gestion de portefeuilles de Harry Markowitz, économiste et prix Nobel 1990, développée dans sa thèse en 1954, considérée plutôt comme de l’économie mathématique que de la finance. Ces travaux ont contribué au développement de nouvelles théories, tout en les nourrissant, au delà de la théorie des probabilités, comme le calcul stochastique d’Ito, la théorie des semi-martingales, la théorie de l’arbitrage, les équations différentielles stochastiques, le contrôle stochastique mais aussi, plus récemment, la théorie des jeux à champ moyen (Mean Field Game).
Dans cet article, on va présenter l’approche classique qui prévaut depuis Black et Scholes pour évaluer le prix d’un produit dérivé, comme une option dite européenne qu’on aura l’occasion de découvrir. Pour cela, on va considérer des marchés en temps discret puis continu, principalement sans coûts de transaction même si l’on évoquera cette possibilité parmi les travaux de recherche récents sur le sujet. Cette approche repose sur une hypothèse d’équilibre des marchés financiers dans le sens d’absence d’opportunité d’arbitrage (NA, No Arbitrage) telle qu’elle sera définie dans notre article. La condition NA est caractérisée grâce au très célèbre théorème fondamental d’évaluation des actifs (FTAP, Fundamental Theorem of Asset Pricing), comme essentiellement équivalente à la nature martingale du processus des prix. Elle permet de résoudre mathématiquement le problème de réplication, et de sur-réplication plus généralement, d’un payoff terminal. On conclura en mentionnant des modèles plus sophistiqués de la recherche moderne en mathématiques financières. Le contenu qui suit est simplifié au maximum pour le rendre accessible au plus grand nombre mais des références sont fournies si vous souhaitez aller plus loin.
MOTS-CLÉS
modèle de Black et Scholes calcul stochastique intégrale d'Ito opportunité d'arbitrage volatilité locale call européen
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Mathématiques
(166 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
TEST DE VALIDATION ET CERTIFICATION CerT.I. :
Cet article vous permet de préparer une certification CerT.I.
Le test de validation des connaissances pour obtenir cette certification de Techniques de l’Ingénieur est disponible dans le module CerT.I.
de Techniques de l’Ingénieur ! Acheter le module
Cet article fait partie de l’offre
Mathématiques
(166 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
BIBLIOGRAPHIE
-
(1) - BAPTISTE (J.), CARASSUS (L.), LÉPINETTE (E.) - Pricing without martingale measure - (2020). https://hal.archives-ouvertes.fr/hal-01774150.
-
(2) - BAPTISTE (J.), GREPAT (J.), LÉPINETTE (E.) - Approximation of non-Lipschitz SDEs by Picard iterations. - Applied Mathematical Finance, 25, 2, 148-179 (2018).
-
(3) - BRU (B.), COURTAULT (J.M.), CREPEL (P.), LEBON (I.), LE MARCHAND (A.), KABANOV (Y.) - Louis Bachelier: To the centenary of Théorie de la Spéculation. - Mathematical Finance. 10, 3, 341-353 (2000).
-
(4) - BAPTISTE (J.), LÉPINETTE (E.) - Diffusion equations: convergence of the functional scheme derived from the binomial tree with local volatility for non smooth payoff functions. - Applied Mathematical Finance, 25, 511-532 (2018).
-
(5) - BLACK (F.), SCHOLES (M.) - The pricing of options and corporate liabilities. - Journal of Political Economy, 81, 3, 637-659 (1973).
-
...
ANNEXES
Le « Vendredi noir » des marchés financiers (2016) :
Congrès international Bachelier World Congress :
HAUT DE PAGECet article fait partie de l’offre
Mathématiques
(166 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
QUIZ ET TEST DE VALIDATION PRÉSENTS DANS CET ARTICLE
1/ Quiz d'entraînement
Entraînez vous autant que vous le voulez avec les quiz d'entraînement.
2/ Test de validation
Lorsque vous êtes prêt, vous passez le test de validation. Vous avez deux passages possibles dans un laps de temps de 30 jours.
Entre les deux essais, vous pouvez consulter l’article et réutiliser les quiz d'entraînement pour progresser. L’attestation vous est délivrée pour un score minimum de 70 %.
Cet article fait partie de l’offre
Mathématiques
(166 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive