Présentation

Article

1 - PRINCIPES ARCHITECTURAUX

2 - DIMENSIONS CARACTÉRISTIQUES

  • 2.1 - Prédéfinition de la mission
  • 2.2 - Bilan et devis de masse
  • 2.3 - Géométrie extérieure – réservoirs
  • 2.4 - Volumes intérieurs – partie centrale
  • 2.5 - Soutes de service

3 - L’AILE, VECTEUR TECHNOLOGIQUE

  • 3.1 - Contrôle prédictif généralisé
  • 3.2 - Une nouvelle approche de la cabine
  • 3.3 - Certification des phases critiques au sol

4 - L'AILE, PRÉCURSEUR ENVIRONNEMENTAL

5 - CONCLUSION – UN DÉFI ET DES PISTES DE SOLUTIONS

6 - GLOSSAIRE

Article de référence | Réf : TRP4072 v1

L’aile, vecteur technologique
L’aile volante cryotechnique - Architecture, dimensionnement, volumes, enjeux technologiques et de certification

Auteur(s) : Yves GOURINAT, Clara TOCABENS

Date de publication : 10 mars 2024

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

RÉSUMÉ

L’hydrogène constitue une solution crédible pour décarboner l’aviation à moyen et long terme. Les conditions de stockage et volumes requis nécessitent néanmoins de repenser l’architecture, la topologie et la forme de l’aéronef. À cet égard l’aile volante de grandes dimensions offre des perspectives qui permettent non seulement d’envisager des performances propres à un gros porteur à propulsion hydrogène au long cours, mais aussi de faire évoluer l’aménagement de la cabine pour des vols de très longue durée. Cette approche environnement intégrée – incluant les aspects logistiques et de recyclage structural – fait l’objet de cet article qui envisage les principales caractéristiques d’un tel aéronef.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

ABSTRACT

The Cryotechnic Flying Wing. Architecture, Sizing, Volumes, Technological and Certification Issue

Hydrogen is a credible solution for decarbonizing aviation in the medium and long term. The storage conditions and volumes required call for a rethink of aircraft architecture and topology. In this respect, the large-scale flying wing offers prospects that not only make it possible to envisage the performance of a long-range wide-body hydrogen-powered aircraft, but also to upgrade the cabin layout for very long flights. This integrated environmental approach - including logistical and structural recycling aspects - is the subject of this article, which describes the main features of such an aircraft.

Auteur(s)

  • Yves GOURINAT : Professeur - Institut Supérieur de l’Aéronautique et de l’Espace, Université de Toulouse, Toulouse, France

  • Clara TOCABENS : Étudiante - Institut Supérieur de l’Aéronautique et de l’Espace, Université de Toulouse, Toulouse, France

INTRODUCTION

Pourquoi l’aile volante et ses technologies ? L’aviation future sera décarbonée ou ne sera pas. En effet, le secteur aérospatial générerait entre 5 et 6 % du réchauffement climatique au niveau mondial (GIEC). La moitié environ de cette contribution est due au CO2 et le complément reste aux traînées de condensation. L’architecture décrite dans cet article ouvre une piste dans ces deux directions, qui permet d’envisager ainsi une évolution de rupture, de nature à non seulement accélérer la décarbonation du transport aérien, mais aussi à promouvoir un modèle novateur durable.

Concernant le CO2, l’hydrogène vert apporte une solution. Toutefois, ce carburant a un impact radical sur l’architecture de l’avion, dès que l’on demande une distance franchissable transocéanique. En effet, en vols locaux, la solution qui consiste à intégrer des réservoirs dans des avions existants peut fonctionner. Mais, si l’on vise des étapes de plus de 10 000 km alors le volume requis nécessite de repenser la topologie et la géométrie même de l’avion.

Cet article propose une nouvelle gestion des volumes qui, non seulement offre la capacité d’embarquer l’hydrogène nécessaire, mais aussi ouvre des perspectives en matière d’aménagement des cabines pour les très longs vols.

Quant aux effets climatiques des traînées de condensation – cirrus étalés par les jetstreams – les solutions existent à l’heure actuelle. Elles consistent à optimiser et réorganiser les trajectoires. Concrètement, pour l’aile volante, il faudra voler moins haut et moins vite que les avions actuels . Cette nécessité environnementale, qui se traduit également par des économies d’énergie et de puissance, peut être satisfaite précisément grâce à la place dont les passagers vont disposer. En effet, la présence de l’hydrogène augmente considérablement le volume global de l’avion, ce dont on bénéficie pour les passagers également. On peut ainsi réaménager la cabine pour des vols de très longue durée (24 heures et plus).

Cette présentation architecturale de l’aile volante du futur – qui prend en compte l’histoire de l’aéronautique, en particulier les concepts développés par Jack Northrop et ses successeurs – propose une approche novatrice de l’avion dans son environnement et son utilisation. C’est cette description intégrée visant plus tard la certification de ce concept que nous proposons ici.

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

KEYWORDS

hydrogen   |   decarbonized aviation   |   cryogenic propulsion   |   environmental certification   |   aircraft architecture

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-trp4072


Cet article fait partie de l’offre

Systèmes aéronautiques et spatiaux

(66 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation

3. L’aile, vecteur technologique

3.1 Contrôle prédictif généralisé

L’aile volante étant par définition instable en tangage (car privée de plan horizontal arrière), la stabilité sera assurée par des commandes de vol électriques, comme c’était déjà le cas sur Concorde (commandes analogiques) mais compte tenu des conditions de vol à basse altitude et à faible vitesse, il sera nécessaire d’être plus performants pour compenser des conditions de turbulence plus critiques.

Ainsi, il faudra intégrer cinq calculateurs indépendants avec cinq algorithmes distincts contrôlant cinq circuits différents agissant sur au moins six élevons à double action, mais il faudra encore anticiper les effets dynamiques des instabilités atmosphériques (turbulence et rafale).

Le contrôle prédictif généralisé (CPG) ouvre une perspective en la matière, comme évoqué précédemment. Il faudra néanmoins l’intégrer dans le cadre avionique ci-dessus avec la démonstration de fiabilité à 10−7 par heure de vol, et à 10−9 pour tout événement divergent.

Cette évolution représente un défi important en matière de certification et les autorités y travaillent précisément avec les avionneurs. Mais c’est dans l’approche globale du système, y compris dans son environnement, que les solutions seront étayées.

HAUT DE PAGE

3.2 Une nouvelle approche de la cabine

La stabilisation évoquée précédemment permettra d’obtenir un confort inégalé offrant aux passagers un cadre de vie comparable à celui d’un petit navire.

On pourrait dire que le CPG sera réellement certifié le jour où on pourra jouer au minigolf dans l’aile volante en croisière. En effet, le référentiel local serait alors suffisamment galiléen pour que le jeu soit possible.

Au-delà du confort en tant que tel, les standards cabine devront s’adapter au vieillissement de la population, à l’allongement des trajets et à la vie à bord.

On peut imaginer que l’on « campe » dans l’avion avec une certaine convivialité, une adaptabilité des locaux et des accessoires tels que la chaise d’extérieur et le hamac....

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Systèmes aéronautiques et spatiaux

(66 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
L’aile, vecteur technologique
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - IATA -   Liquid hydrogen as a potential low-carbon fuel for aviation.  -  IATA Fact Sheet 7, http://www.iata.org/contentassets/d13875e9ed784f75bac90f000760e998/fact_sheet7-hydrogen-fact-sheet_072020.pdf (2014).

  • (2) - RAYMER (D.L.) -   Aircraft Design : A Conceptual Approach.  -  American Institute of Aeronautics & Astronautics, ISBN 978-1624104909, 1062 p. (2018).

  • (3) - TORENBEEK (E.) -   Advanced Aircraft Design : Conceptual Design, Technology and Optimization of Subsonic Civil Airplanes.  -  Wiley, ISBN 978-1118568118, 436 p. (2013).

  • (4) - GUILER (R.W.) -   Control of a swept wing tailless aircraft through wing morphing.  -  ICAS 2008 : 26th Congress of International Council of the Aeronautical Sciences, Paper ICAS 2008-2.7.1.

  • (5) - OKONKWO (P.), SMITH (H.) -   Review of evolving trends in blended wing body aircraft design.  -  Progress in Aerospace Sciences, vol. 82, 2016, DOI 10.1016/j.paerosci.2015.12.002.

  • ...

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Systèmes aéronautiques et spatiaux

(66 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS