Article

1 - ANISOTROPIE MACROSCOPIQUE

2 - PROPRIÉTÉS DES JOINTS DE GRAINS

3 - OPTIMISATION DES MICROSTRUCTURES ET DES PROPRIÉTÉS PAR APPLICATION DE CHAMPS MAGNÉTIQUES

4 - CONCLUSION

5 - GLOSSAIRE

6 - SYMBOLES

7 - REMERCIEMENTS

Article de référence | Réf : M3042 v1

Texture et anisotropie des matériaux polycristallins - Propriétés des matériaux texturés

Auteur(s) : Claude ESLING

Date de publication : 10 sept. 2017

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais En anglais

NOTE DE L'ÉDITEUR

29/09/2017

Cet article est la réédition actualisée de l’article M605 intitulé « Texture et anisotropie des matériaux » paru en 1997, rédigé par Hans-Joachim Bunge et Claude Esling.

RÉSUMÉ

Les matériaux polycristallins industriels possèdent une texture cristallographique. Cet article étudie les propriétés des matériaux polycristallins comme des moyennes sur les matériaux monocristallins, calculées avec la fonction de texture. En élasticité, il expose les modèles de Voigt, Reuss, Hill et en plasticité, le classique modèle de Taylor full constraint qui suppose que la déformation plastique locale est égale à la déformation plastique moyenne. Les améliorations par la relaxation partielle de cette condition, ie. relaxed constraint, sont mentionnées. Y est illustrée l'application de la simulation des textures de déformation à la prédiction du comportement de tôles en emboutissage.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

ABSTRACT

Texture and anisotropy of polycrystalline materials Properties of textured materials

Industrial polycrystalline materials have a crystallographic texture. This article looks at the properties of polycrystalline materials as averages over monocrystalline materials, calculated with the texture function. For elasticity, it describes the models of Voigt, Reuss and Hill and for plasticity, the classical model of Taylor in the full constraint version, which assumes that the local plastic deformation is equal to the average plastic deformation. Improvements by partial relaxation of this condition, i.e. relaxed constraints, are mentioned. The application of the simulation of deformation textures to predicting the behavior of sheet metal in deep drawing is illustrated.

Auteur(s)

  • Claude ESLING : Professeur émérite à l’Université de Lorraine - Laboratoire d’Étude des Microstructures et de Mécanique des Matériaux & Laboratoire d’Excellence DAMAS, Université de Lorraine, Metz, France

INTRODUCTION

Cet article termine une série de trois consacrés aux textures cristallographiques dans les matériaux polycristallins. Après l'article sur les techniques et méthodes de la description des textures [M 3 040], celui sur les mécanismes de formation des textures [M 3 041], celui-ci vise à étudier les propriétés des matériaux possédant une texture cristallographique. La texture, de même que d’autres paramètres structuraux, comme par exemple les joints de grains, peut fortement influencer les propriétés des matériaux polycristallins. En fait, les propriétés des matériaux dépendent de multiples paramètres, tels que la structure cristalline, la composition chimique des phases, l’orientation cristalline et les défauts de réseau. Cet article ne traite que de l’influence de l’orientation cristalline sur les propriétés des matériaux, c’est-à-dire de l'effet dû à la texture et aux grandeurs texturales d’ordre élevé, les autres influences possibles étant considérées comme acquises. L’orientation cristalline influence les propriétés des matériaux via l’anisotropie cristalline : dépendance des propriétés par rapport à la direction cristallographique. Les industriels sont intéressés notamment par les propriétés mécaniques qui déterminent le comportement lors de la mise en forme et la tenue en service. Or, les propriétés des matériaux polycristallins ne sont pas les simples moyennes arithmétiques des propriétés des monocristaux. Les grains monocristallins, qui sont les constituants élémentaires du matériau, ne sont pas indépendants les uns des autres, mais au contraire corrélés par l'ensemble de l'édifice polycristallin. La propriété physique moyenne inclut toutes les influences liées à la structure de l'édifice polycristallin.

Le lecteur trouvera en fin d'article un tableau des symboles utilisés.

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

KEYWORDS

crystallographic texture   |   mean physical properties   |   elastic anisotropy   |   polycristalline plasticity

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-m3042


Cet article fait partie de l’offre

Étude et propriétés des métaux

(201 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation
Version en anglais En anglais

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Étude et propriétés des métaux

(201 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - BUNGE (H.J.) -   Texture analysis in materials science.  -  Mathematical Methods (1982). Butterworth London, 593 p., 2nd Ed., Cuvillier-Verlag Göttingen (1993).

  • (2) - BUNGE (H.J.), ESLING (C.) (Eds) -   Quantitative texture analysis.  -  1982 DGM Informationgesellschaft-Verlag Oberusel. 551 p. 2nd Ed. (1986).

  • (3) - BUNGE (H.J.), ESLING (C.) (Eds) -   Advances and applications of quantitative texture analysis.  -  DGM Informationgesellschaft-Verlag Oberusel. 308 p. (1991).

  • (4) - NYE (J.F.) -   Physical Properties of Crystals : Their Representation by Tensors and Matrices.  -  Clarendon Press, Oxford, 329 p. (1985).

  • (5) - ZUO (L.), HUMBERT (M.), ESLING (C.) -   J. Appl. Crystallogr..  -  25, 751 (1992).

  • (6) - KRÖNER (E.) -   Statistical...

1 Outils logiciels

DAHLEM-KLEIN (E.), KLEIN (H.) et PARK (N.J.). 1 avenue system : ODF Analysis, Cuvillier-Verlag Göttingen, 109 p. (1993).

PARK (N.J.), KLEIN (H.) et DAHLEM-KLEIN (E.). 1 avenue system : physical properties of textured materials. Cuvillier-Verlag Göttingen, 150 p. (1993).

SCHAEBEN et al. A MATLAB Toolbox for Quantitative Texture Analysis, Boîte à outils MATLAB pour l’analyse quantitative des textures, développée par H. SCHAEBEN et al., TU Freiberg, Allemagne

http://mtex-toolbox.github.io/

MAUD est l’acronyme pour Material Analysis Using Diffraction, code général d’analyse de diffraction/réflectivité basé en partie sur les méthodes de Rietveld

http://maud.radiographema.com/

BEARTEX est l’acronyme pour Berkeley Texture Package, ensemble de programmes pour l’analyse quantitative des textures basé sur Windows.

http://www.ecole.ensicaen.fr/∼chateign/qta/beartex/

Logiciel d’analyse de texture à partir de la méthode...

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Étude et propriétés des métaux

(201 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS