Article | REF: E6520 V1

Nanophotonics devices for thermal emission

Authors: Henri BENISTY, Patrick BOUCHON, François MARQUIER, Émilie SAKAT

Publication date: July 10, 2018 | Lire en français

You do not have access to this resource.
Click here to request your free trial access!

Already subscribed? Log in!

Automatically translated using artificial intelligence technology (Note that only the original version is binding) > find out more.

    A  |  A

    Overview

    ABSTRACT

    Thermal emission, or light emission from a hot body such as a light bulb filament, is often taken as a typical example of incoherent radiation. Hot sources are known to be isotropic, broadband, and slow. They are also known for their poor wall-plug efficiency. Nano-photonics, namely light-matter interaction at sub-wavelength scales, revolutionizes the concept of thermal source. This article presents the main basics to deal with thermal radiation, and shows examples of hot sources that can be directional, monochromatic, fast and efficient, paving the way toward new infrared sources.

    Read this article from a comprehensive knowledge base, updated and supplemented with articles reviewed by scientific committees.

    Read the article

    AUTHORS

    • Henri BENISTY: Professor at the Institut d'Optique Graduate School, Charles Fabry Laboratory, - Palaiseau, France

    • Patrick BOUCHON: Researcher at ONERA, Palaiseau, France

    • François MARQUIER: Professor at the École Normale Supérieure Paris-Saclay, Aimé Cotton Laboratory, - Orsay, France

    • Émilie SAKAT: Researcher at the Institut d'Optique Graduate School, Charles Fabry Laboratory, - Palaiseau, France

     INTRODUCTION

    The first electric light sources were developed for visible-light applications by Joseph Swan and Thomas Edison at the end of the 19th century. The operation of these incandescent bulbs was based on the fact that any hot object has a propensity to emit electromagnetic radiation determined by the laws of thermodynamics. In the second half of the twentieth century, the invention of laser sources and LEDs made it possible to achieve properties impossible to achieve with incandescent bulbs, such as directionality or spectral finesse, as well as much higher power thresholds and energy yields. The advent of nanophotonics in the 21st century has reopened up major prospects for these so-called "thermal" sources. The idea that it was possible to give a coherent character both spatially and temporally to thermal radiation, which had hitherto been considered the prerogative of laser radiation, received a decisive boost at the beginning of our century.

    This article presents the advances and developments made in infrared thermal sources, as well as their potential applications. In the first section, the main infrared light sources are presented, along with the physical mechanisms involved in each case: LEDS, quantum cascade lasers, OPOs and thermal sources. Each of these sources has its own limitations, whether in terms of achievable spectral bandwidth, energy efficiency or cost.

    In the second section, the optimization of a heat source is described from both an electromagnetic and a thermal point of view. A hot object tends towards thermodynamic equilibrium via three possible channels: thermal conduction, convection and thermal radiation. The challenge of thermal optimization is to favor the third channel while minimizing the other two. Electromagnetic optimization, based on Kirchhoff's law at both macroscopic and microscopic scales, enables the selection of spectral and angular radiation bands.

    In the third section, we present the main families of thermal sources born of the use of nanophotonic devices: directional sources, narrow spectral band sources and rapidly time-modulated sources (currently around MHz).

    Finally, the main existing or developing applications for these sources are described (gas detection, light source, thermophotovoltaic generation and frequency conversion, image coding and radiative cooling).

    At the end of the article, readers will find a glossary and a list of the symbols and acronyms used.

    You do not have access to this resource.

    Exclusive to subscribers. 97% yet to be discovered!

    You do not have access to this resource.
    Click here to request your free trial access!

    Already subscribed? Log in!


    The Ultimate Scientific and Technical Reference

    A Comprehensive Knowledge Base, with over 1,200 authors and 100 scientific advisors
    + More than 10,000 articles and 1,000 how-to sheets, over 800 new or updated articles every year
    From design to prototyping, right through to industrialization, the reference for securing the development of your industrial projects

    KEYWORDS

    radiation sources   |   thermal emission   |   nanophotonics


    This article is included in

    Nanosciences and nanotechnologies

    This offer includes:

    Knowledge Base

    Updated and enriched with articles validated by our scientific committees

    Services

    A set of exclusive tools to complement the resources

    Practical Path

    Operational and didactic, to guarantee the acquisition of transversal skills

    Doc & Quiz

    Interactive articles with quizzes, for constructive reading

    Subscribe now!

    Ongoing reading
    Nanophotonic devices for thermal emission