Les premières sources électriques de lumière ont été développées pour les applications d'éclairage dans le visible par Joseph Swan et Thomas Edison à la fin du XIXe siècle. Le fonctionnement de ces ampoules à incandescence reposait alors sur le fait que tout objet chaud a une propension à émettre un rayonnement électromagnétique déterminé par les lois thermodynamiques. Dans la deuxième moitié du XXe siècle, l'invention des sources lasers et des LEDs a permis d'obtenir des propriétés impossibles à atteindre avec ces ampoules incandescentes, comme la directionnalité ou la finesse spectrale, ainsi que des seuils de puissance et des rendements énergétiques bien supérieurs. L'avènement de la nanophotonique au XXIe siècle a réouvert des perspectives importantes pour ces sources que nous appellerons « thermiques ». L’idée qu'il était possible de donner un caractère cohérent à la fois spatialement et temporellement à un rayonnement thermique, ce qui était jusqu'alors considéré comme l'apanage des rayonnements lasers, a reçu un élan décisif au début de notre siècle.
Cet article présente les avancées et les développements accomplis sur les sources thermiques infrarouges, ainsi que leurs opportunités d'applications. Dans une première section, les principales sources de lumière dans l'infrarouge sont présentées avec les mécanismes physiques impliqués dans chaque cas : LEDS, lasers à cascade quantique, OPOs et sources thermiques. Chacune de ces sources présente des limitations, soit de bande spectrale atteignable, soit d'efficacité énergétique ou encore de coût.
Dans la deuxième section, l'optimisation d'une source thermique est décrite tant du point de vue électromagnétique que thermique. Un objet chaud tend vers l'équilibre thermodynamique par l’intermédiaire de trois canaux possibles : la conduction thermique, la convection et le rayonnement thermique. L'optimisation thermique a pour enjeu de favoriser ce troisième canal tout en minimisant les deux autres. L'optimisation électromagnétique, qui repose sur la loi de Kirchhoff à l'échelle macroscopique et microscopique, permet de sélectionner les bandes spectrales et angulaires de rayonnement.
Dans la troisième section, sont présentées les grandes familles de sources thermiques nées de l'utilisation de dispositifs nanophotoniques : les sources directionnelles, les sources à bande spectrale étroit et les sources modulées temporellement rapidement (actuellement autour du MHz).
Enfin, les principales applications existantes ou en développement de ces sources sont décrites (détection de gaz, source de lumière, génération thermophotovoltaïque et conversion de fréquence, codage d’image et refroidissement radiatif).
Le lecteur trouvera en fin d'article un glossaire et une liste des symboles et des sigles utilisés.