Quizzed article | REF: K726 V1

Processing Coated Conductors

Author: Philippe ODIER

Publication date: November 10, 2015, Review date: March 10, 2021 | Lire en français

You do not have access to this resource.
Click here to request your free trial access!

Already subscribed? Log in!

Automatically translated using artificial intelligence technology (Note that only the original version is binding) > find out more.

    A  |  A

    Overview

    ABSTRACT

    This paper describes methods to develop superconducting tapes based on materials of the latest generation of superconductors with high critical temperature (superconducting coated conductors). The paper first focuses on innovative methods, which involve the functionalization of a flexible metal substrate by physical or chemical processes. It goes on to highlight the most original and promising methods for depositing the superconducting species. The benefits and promises of these methods are discussed in a short conclusion.

    Read this article from a comprehensive knowledge base, updated and supplemented with articles reviewed by scientific committees.

    Read the article

    AUTHOR

    • Philippe ODIER: Former CNRS research director - Center de recherche pour l'émergence des techniques avancées CRETA Institut Néel, CNRS, Grenoble, France

     INTRODUCTION

    Superconductors are a class of materials with extremely important properties. One of their most emblematic applications is CERN's LHC (Large Hadron Collider), which led to the discovery of the Higgs boson in 2013. Without superconductors and the power of the magnets they enable, CERN's ring would be 100 km long, rather than the current 27 km; the construction of ITER (CEA-Cadarache France), which aims to harness energy production through nuclear fusion, would not be feasible.

    Superconductivity has been known for a century, and research into superconducting materials has always been very active in applying these "magical" physical properties. Materials physicists and chemists have succeeded in developing metal alloys in wire form that take advantage of so-called classical superconductors (such as NbTi or Nb 3 Sn alloys, for example) whose critical temperature remains below 20 °K. They require liquid helium cryogenics, which is well-known but expensive. In 1986, the high-T revolution c (or HTS for High Temperature Superconductor) through the discovery of superconductivity above the temperature of liquid nitrogen turned this field on its head. Not only are the new cuprate-based materials, of which YBa 2 Cu 3 O 7 is the best known, no longer metals in the material sense of the term, but ceramics, and their critical temperature reaches 93 °K and even 120 °K in some compounds (the latter are not very exploitable, however). The interest in this new family is enormous, but so is the effort required to take advantage of it. How do you manufacture a cable several kilometers long using ceramics? Such is the challenge posed by these new materials. Thanks to the joint efforts of physicists and chemists, a new class of materials is about to emerge.

    Initially, the researchers exploited a variety of cuprates, suitable for shaping close to that of conventional superconductors; they succeeded in inserting BiSrCaCuO aggregates or powders (Bi 2 Sr 2 CaCu 2 O x : Bi2212 or Bi 2 Sr 2 Ca 2 Cu 3 O x : Bi2223) in silver sheaths and turn them into superconducting ceramics. Industrialists were able to transform these wires into superconducting cables, the most high-profile...

    You do not have access to this resource.

    Exclusive to subscribers. 97% yet to be discovered!

    You do not have access to this resource.
    Click here to request your free trial access!

    Already subscribed? Log in!


    The Ultimate Scientific and Technical Reference

    A Comprehensive Knowledge Base, with over 1,200 authors and 100 scientific advisors
    + More than 10,000 articles and 1,000 how-to sheets, over 800 new or updated articles every year
    From design to prototyping, right through to industrialization, the reference for securing the development of your industrial projects

    KEYWORDS

    thin films   |   chemical deposition   |   texture   |   epitaxy   |   critical courant   |   energy   |   magnetism


    This article is included in

    Metal treatments

    This offer includes:

    Knowledge Base

    Updated and enriched with articles validated by our scientific committees

    Services

    A set of exclusive tools to complement the resources

    Practical Path

    Operational and didactic, to guarantee the acquisition of transversal skills

    Doc & Quiz

    Interactive articles with quizzes, for constructive reading

    Subscribe now!

    Ongoing reading
    Production processes for superconducting coated conductors