- Article de bases documentaires
|- 10 mars 2023
|- Réf : D3117
L’une des étapes, lors de la détermination des différents éléments constituant un convertisseur de puissance, est le choix du dissipateur qui préserve l’intégrité thermique des semi-conducteurs de puissance. Celle-ci est réalisée en maintenant la température de jonction du composant en dessous de sa valeur critique pendant le cycle de fonctionnement. Le coût du dissipateur, ou plus globalement de la fonction refroidissement, est étroitement lié au couple dissipateur-composant. La démarche industrielle de choix d’un dissipateur est développée dans cet article, un compromis entre le calcul académique et une simulation parfois laborieuse.
- Article de bases documentaires
|- 10 déc. 2020
|- Réf : E3385
Les modules de puissance sont une des parties élémentaires utilisées en électronique pour réaliser des circuits de conversion d'énergie, comme ceux d'un onduleur. Un module de puissance est constitué des éléments suivants : des puces semi-conductrices, un substrat céramique métallisé, une semelle, des brasures, des éléments de connexion internes, des terminaux électriques et un encapsulant. Ces constituants ont des propriétés électriques, thermiques et mécaniques différentes, susceptibles d'affecter les performances globales du module de puissance. Cet article dresse un état de l'art sur les diverses fonctions d'un module de puissance et présente les technologies actuelles pour les mettre en œuvre. Les aspects « densité de puissance élevée » et « fonctionnement haute température » - au-delà de 200 °C - sont plus particulièrement développés.
- ARTICLE INTERACTIF
|- 10 avr. 2021
|- Réf : E3977
Récupérer efficacement l’énergie de vibrations mécaniques à l’aide de transducteurs piézoélectriques nécessite la mise en œuvre de circuits d’interface adaptés, associés à des techniques de contrôle spécifiques. Cet article montre l’influence de circuits d’extraction d’énergie élémentaires ou avancés sur la puissance récupérée et la bande passante. Plusieurs familles de circuits d’interface et différentes méthodes de commande sont proposées, permettant, selon les caractéristiques électromécaniques du transducteur, de maximiser la puissance électrique générée ou même d’adapter sa fréquence de résonance pour exploiter les vibrations ambiantes de manière optimale.