Overview
ABSTRACT
Metal properties depend on their composition, structure and transformation points of the metal phases. Knowledge and measurement of these characteristics, topics of the present article, are essential for optimizing the forming and treatment processes that determine the properties of metallic materials. Quantitative analysis includes microanalysis by Castaing probe, spectrometric analysis by spark erosion and measurement of residual austenite content by X-ray diffraction. Differential scanning calorimetry, dilatometry and magnetometry are used to study transformation points.
Read this article from a comprehensive knowledge base, updated and supplemented with articles reviewed by scientific committees.
Read the articleAUTHOR
-
Thomas MUNCH: ENSAIS engineer - Certified Teacher in Mechanical Engineering, Saint-Louis, France
INTRODUCTION
The properties of metal alloys are determined by transformation through thermomechanical treatments. Controlling the effects of these treatments and managing their transformation processes requires knowledge of microstructures and how they evolve.
Two types of data provide access to this information. They are measured using two categories of methods:
analysis of physicochemical transformation points: thermal, dilatometric, and magnetic analyses, as well as quantitative metallographic methods; these are described in this article;
Analysis of microstructures using optical or electron microscopy and related techniques
.[M 91]
Quantitative methods can be used to determine chemical components, but also, to a large extent, the metallographic structures present and their proportions. The most widely used laboratory equipment for metal analysis is undoubtedly the spark spectrometer (optical emission spectrometry, OES). Measuring the residual austenite content after quenching steels has become possible thanks to the X-ray diffraction measurement technique.
The analysis of transformation points makes it possible to construct phase diagrams or identify the phase transformations of an alloy whose diagram is known. DSC (differential scanning calorimetry) and dilatometry are the leading techniques in this field. Current equipment can often reach temperatures of around 1,500°C, which, in the case of DSC, allows the solidus and liquidus to be identified for steels and many other metals.
Metallographic, thermal, and elemental characterizations of metals lead to the optimization of their manufacturing processes, but also, and above all, to the optimization of their performance and, ultimately, to the maximization of the product, from both a technical-economic and environmental standpoint.
Exclusive to subscribers. 97% yet to be discovered!
You do not have access to this resource.
Click here to request your free trial access!
Already subscribed? Log in!
The Ultimate Scientific and Technical Reference
KEYWORDS
Metallography | phase analysis | microstructures | composition of metal alloys
EDITIONS
Other editions of this article are available:
This article is included in
Studies and properties of metals
This offer includes:
Knowledge Base
Updated and enriched with articles validated by our scientific committees
Services
A set of exclusive tools to complement the resources
Practical Path
Operational and didactic, to guarantee the acquisition of transversal skills
Doc & Quiz
Interactive articles with quizzes, for constructive reading
Metallographic, thermal, and elemental characterization of metals
Bibliography
Bibliography
Standards and norms
Metallography
- Steel products – Methods for determining the content of non-metallic inclusions in steels - NF A 04-105 - 1986
- General purpose non-alloy steel wire for wire drawing – Surface inspection - NF EN ISO 16120 - 2017
- Steel products – - NF EN 10328 - 2016
- Steels – - NF EN ISO 643 - 2020
- Tools and mechanical parts – Nitriding treatments for mechanical...
Directory
Manufacturers – Suppliers – Distributors (non-exhaustive list)
Leica Microsystems: microscopy https://www.leica-microsystems.com/fr/
Olympus: microscopy https://www.evidentscientific.com/fr/
Zeiss: microscopy...
Exclusive to subscribers. 97% yet to be discovered!
You do not have access to this resource.
Click here to request your free trial access!
Already subscribed? Log in!
The Ultimate Scientific and Technical Reference