Présentation

Article

1 - RÉFÉRENCES DE BASES EN SÛRETÉ DE FONCTIONNEMENT

2 - DEUX DISCIPLINES EN INTERACTION

3 - EXEMPLE DE CYCLE DE VIE DE LA SÉCURITÉ

4 - CARACTÉRISTIQUES DES EXIGENCES

5 - TYPAGE ET FORMULATION DES EXIGENCES DE SÛRETÉ DE FONCTIONNEMENT

6 - VÉRIFICATION DES EXIGENCES

7 - GESTION DES EXIGENCES DE SÛRETÉ DE FONCTIONNEMENT

8 - CONCLUSION

Article de référence | Réf : E1310 v1

Conclusion
Notions de sûreté de fonctionnement pour la CEM

Auteur(s) : Vincent BRINDEJONC

Relu et validé le 04 mai 2017

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

RÉSUMÉ

Le présent article a pour objectif de construire des liens entre, d'une part, la sûreté de fonctionnement, qui cherche à garantir les performances de fiabilité, maintenabilité, disponibilité et sécurité, avec la compatibilité électromagnétique, qui cherche à empêcher les rayonnements parasites des équipements et à les rendre robustes aux rayonnements extérieurs. Au-delà du rapprochement des méthodes, l'article, dans un souci opérationnel, analyse les interactions entre sûreté de fonctionnement et compatibilité électromagnétique sur la base des exigences échangées, ainsi que des tests et analyses pouvant permettre de les vérifier.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

ABSTRACT

Dependability and safety concepts for EMC

This article aims building links between dependability-safety and electromagnetic compatibility. On one hand, dependability-safety seeks to ensure the reliability, maintainability, availability and safety performances and on other hand electromagnetic compatibility seeks to prevent adverse radiation of equipment and make them robust to external radiation. Although these activities are connected they usually not interact so much. In order to be operational, this article analyses the interactions between dependability-safety and electromagnetic compatibility requirements and tests and analyses that can be used to verify them.

Auteur(s)

INTRODUCTION

Cet article a pour but de jeter des passerelles entre les métiers de la Compatibilité ÉlectroMagnétique (CEM) système et de la Sûreté de Fonctionnement (SdF). Historiquement, ces deux domaines ont peu communiqué alors que, techniquement, leurs buts sont liés et qu'ils pourraient s'enrichir l'un l'autre y compris méthodologiquement.

Ce manque de communication a des causes historiques profondes. Il est notable en particulier que les ingénieurs CEM aient créé leur propre échelle de gravité des effets pour pallier l'absence de proposition adaptée des ingénieurs SdF. De fait, la CEM s'attache à des effets très dépendants de la dynamique des causes alors que la SdF se focalise plutôt sur des effets stationnaires. Par ailleurs, la SdF s'est fortement concentrée sur les aspects sécuritaires alors que la CEM a conservé un spectre d'effets allant de la perturbation mineure à la perte de fonction. Enfin la CEM, basée sur des essais, a conservé une approche par marge de sécurité là où la fiabilité cherchait à définir des probabilités par une modélisation de type résistance-contrainte.

Les effets de ce manque de communication sont nombreux. Les contraintes CEM sont bien souvent laissées au concepteur et ne sont pas prises en compte par la SdF. Dans le même temps, les exigences SdF sont mal comprises, mal prises en compte et finalement mal testées sur leurs aspects CEM. De ce fait, les tests CEM n'intègrent souvent pas toute la dimension de la mission du système dans le paramétrage des contraintes appliquées en essai.

La sûreté de fonctionnement est l'activité qui permet de garantir qu'un produit réalisera les fonctions pour lesquelles il a été conçu, sans risques inacceptables pour ses opérateurs et son environnement.

Considérant que la SdF a été largement abordée dans d'autres bases des Techniques de l'Ingénieur, cet article ne reprendra pas en détail les aspects méthodologiques de la SdF même si certains d'entre eux, tels les arbres de défaillances, peuvent revêtir un fort intérêt heuristique pour la CEM. Il se concentrera donc sur le lien entre CEM et SdF selon un point de vue moins usuel privilégiant la définition des exigences de sûreté de fonctionnement, leurs tests et en précisant systématiquement leur signification du point de vue de la CEM.

Après avoir observé les nombreuses passerelles possibles entre SdF et CEM le long d'un cycle de développement typique, les différents types d'exigences que l'on rencontre en SdF seront définis et caractérisés pour être utiles à la CEM. Enfin les moyens de tester ces exigences seront détaillés, en particulier du point de vue de la CEM.

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

KEYWORDS

dependability-safety   |   electromagnetic compatibility   |   transportation   |   defense

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-e1310


Cet article fait partie de l’offre

Électronique

(243 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

8. Conclusion

La sûreté de fonctionnement intègre les besoins client et les cas d'usage du produit pour définir ses exigences de robustesse. Ce travail fondamental devrait être le point d'entrée pour la CEM dans la déclinaison des niveaux de contraintes du besoin vers le système et ses composants. Ce lien lorsqu'il est mal compris engendre des contraintes de CEM en général surdimensionnées dans des phases de vie où le produit n'a pas de fonctionnalité critique. Il arrive parfois aussi que la CEM se définisse des exigences ayant pour but d'afficher une robustesse qui, si elle venait à manquer, affecterait l'image de marque du produit. Ces exigences sont souvent traitées avec le même niveau de priorité que des exigences touchant à la sécurité ou à la disponibilité du produit.

La SdF énonce que la bonne adéquation entre les modes de fonctionnement des produits sous contraintes CEM, leurs fonctionnalités et les niveaux de ces contraintes passe par l'identification précise des événements redoutés. La complexité des systèmes modernes rend impossible l'exploration systématique de tous les modes de fonctionnement possibles, et ce, même pour les fonctions critiques. Lorsque l'on veut garantir la tenue d'une fonction de pilotage dans un environnement électromagnétiques on doit déjà définir cet environnement, en incluant les sources embarquées (on pense par exemple aux PED – Portable Electronic Devices pour les avions) et les sources externes aux systèmes (naturelles et artificielles). Mais dans l'identification des sources internes – et c'est là une difficulté de la CEM – interviennent aussi les autres équipements embarqués.

Pour réduire la tâche, sinon incommensurable, on impose aux autres équipements des niveaux d'émissions qui restent en deçà d'intensités dangereuses. Par cette ségrégation implicite, on évacue normalement de l'environnement ces sources supplémentaires très nombreuses. Pour autant, cette ségrégation reste compliquée et les effets de cumuls ou contraintes simultanées doivent faire l'objet de surveillances et questionnements régulièrement reposés.

Dans l'hypothèse de ségrégation effective, on va pouvoir définir l'environnement visé, les sources internes et externes, les événements redoutés pour les fonctions et les niveaux de sécurité associés (ASIL, DAL, SIL, ...). Forts de ces connaissances, on explore les modes de défaillances des électroniques étudiées...

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Électronique

(243 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Conclusion
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - KHAN (P.) et al -   Guide démarche et méthodes de sûreté de fonctionnement des logiciels – Version 1,  -  Collège Sûreté de Fonctionnement des logiciels GTR 62 « Démarche et méthodes de SdF des logiciels », (2000).

  • (2) - FANMUY (G.) et al -   CTPG_REQ_01 Pratique de l'ingénierie des exigences – Guide pratique, version 1  -  © AFIS, 2012.

  • (3) - BRINDEJONC (V.) et PLAZE (N.) -   Rédaction, vérification et gestion des exigences de Sûreté de Fonctionnement,  -  Lambda-Mu 18, Tours, 2012.

  • (4) - HELLER (C.), TARDIF (S.) et BRINDEJONC (V.) -   Éléments clefs pour une conception sure optimisée de systèmes complexes,  -  Lambda-Mu 18, Tours, 2012.

  • (5) - BOULOUET (H.), BRINDEJONC (V.) et MUGUR-SCHÄCHTER (M.) -   Analyse de risques dans le cadre d'une ingénierie système relativisée,  -  Lambda-Mu 16, Avignon, 2008.

  • ...

DANS NOS BASES DOCUMENTAIRES

1 Événements

Congrès Lambda-Mu organisés par l'IMdR (Institut pour la Maîtrise des Risques [ http://www.imdr.fr/])

HAUT DE PAGE

2 Normes et standards

ED-79A/ARP-4754A – Guidelines for Development of Civil Aircraft and Systems SAE international & EUROCAE 21/12/2010.

CEI 61508 – NF-EN 61508, ed2.0 2010-04 Functional safety of electrical/ electronic/ programmable electronic safety-related systems

Part 1 : General requirements,

Part 2 : Requirements for electrical/electronic/programmable electronic safety-related systems,

Part 3 : Software requirements,

Part 4 : Definitions and abbreviations,

Part 5 : Examples of methods for the determination of safety integrity levels,

Part 5 : Guidelines on the application of IEC 61508-2 and IEC 61508-3,

Part 6 : Overview of techniques and measures.

ISO 26262, 2011 « Road vehicles – Functional safety »

Part 1 : Vocabulary

Part 2 : Management of functional safety

Part 3 : Concept phase

Part 4 : Product development : system level

Part 5 : Product development : hardware level

Part 6 : Product development : software level

Part 7 : Production and operation

Part 8 : Supporting processes

Part 9 : ASIL-oriented and safety-oriented analyses

Military Handbook – Electronic Reliability Design Handbook – MIL-HDBK-338B 1 October 1998.

HAUT DE PAGE

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Électronique

(243 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS