Présentation

Article

1 - DÉTECTEURS GAZEUX

2 - SCINTILLATEURS

3 - DÉTECTEURS À SEMI- CONDUCTEURS

Article de référence | Réf : AF3531 v1

Détecteurs à semi- conducteurs
Interaction particules-matière - Détecteurs

Auteur(s) : Christian BOURGEOIS

Date de publication : 10 juil. 1998

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Auteur(s)

  • Christian BOURGEOIS : Institut de physique nucléaire d’Orsay - Université Paris-VII-Denis-Diderot

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

INTRODUCTION

Les détecteurs sont des ensembles capables de mesurer les propriétés des rayonnements (masse, charge, trajectoire...), un par un, et dans une géométrie 4 π le plus souvent : à titre d’exemple, le détecteur central de Delphi au CERN (détecteur de microvertex) est constitué de 3 x 107 cellules de détection correspondant à 126 000 voies de signaux à traiter, pour identifier toutes les trajectoires des particules créées dans une réaction e+ + e à 100 GeV dans le centre de masse. Dans ce cas-là, la particule dépose une infime partie de son énergie dans chaque plan de détecteurs traversé, ce qui permet la reconstitution de sa trajectoire. Les caractéristiques complémentaires des particules sont mesurées par d’autres détecteurs comptés eux aussi par dizaines de milliers, ainsi l’énergie de la particule est mesurée dans des détecteurs massifs (calorimètres) qui l’arrêtent totalement.

La physique du XXe siècle se caractérise par l’observation indirecte des phénomènes étudiés, l’œil n’étant plus adapté à la perception directe de ces phénomènes, contrairement à tout ce qui se pratiquait jusqu’alors. On peut précisément dater de 1895, et la découverte des rayons X par Wilhelm Conrad Röntgen, et la détection indirecte d’un phénomène physique : c’est la fluorescence d’un écran de platinocyanure de baryum qui révéla (indirectement) à l’œil de Röntgen l’émission de rayons X provenant d’un tube à décharges électriques.

La détection d’un rayonnement ionisant (directement ionisant comme une particule chargée, ou indirectement ionisant comme les photons X et γ ou les neutrons) revient à prélever tout ou partie de l’énergie du rayonnement et à la transformer sous une forme plus maniable : à la suite des ionisations créées par la particule sur son passage, les charges positives (ions) et les charges négatives (électrons) peuvent être séparées sous l’action d’un champ électrique : cela donne naissance à un courant électrique. C’est sur ce principe que fonctionnent les détecteurs gazeux (chambre d’ionisation, compteur Geiger-Müller, chambre proportionnelle multifil...), les détecteurs liquides à l’argon par exemple, les détecteurs solides à semi-conducteurs comme les jonctions Si et Ge. Lorsque les charges créées par l’ionisation primaire ne sont pas séparées, il y a recombinaison qui peut s’accompagner d’émission de lumière dans le cas des scintillateurs, d’un « effet mémoire » du milieu traversé (émulsions, chambres à bulles...), d’une élévation de température (détecteurs thermiques) et d’autres phénomènes moins décelables.

Dans le cas des scintillateurs, l’énergie perdue par le rayonnement dans une certaine épaisseur de matière va se retrouver sous forme d’un certain nombre de photons de luminescence (proportionnel à l’énergie transférée) ; un capteur approprié (tube photomultiplicateur, photodiode) se chargera de transformer ce nombre de photons en un courant électrique proportionnel. Dans le cas des détecteurs gazeux et des semi-conducteurs, on fait l’économie d’une étape puisque l’énergie transférée est directement transformée en un nombre de charges, donc en un courant proportionnel. On est ainsi amené à définir la quantité d’énergie W nécessaire pour produire un élément de réponse du détecteur : il faut W » 3 eV pour créer une paire électron-trou dans un semi-conducteur, W » 35 eV pour créer une paire électron-ion dans un gaz et W » 150 eV pour créer un photoélectron dans un ensemble scintillateur + tube photomultiplicateur. Pour une même énergie déposée dans le milieu détecteur, la « quantité d’information » sera d’autant plus élevée que W est petit : cela se traduit directement sur la dispersion de la réponse du détecteur considéré.

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-af3531


Cet article fait partie de l’offre

Physique Chimie

(200 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation

3. Détecteurs à semi- conducteurs

C’est peu après la découverte du transistor à pointe avec un cristal de germanium par J. Bardeen et W. Brattain en 1947 que K. G. McKay réalisa la première détection nucléaire (des particules α) avec une jonction à pointe au germanium (1949). Deux ans plus tard, le même McKay réalisa le premier détecteur à jonction PN avec une région sensible de 5 µm x 1 mm2. Les jonctions métal-semi-conducteur donnèrent naissance aux détecteurs à barrière de surface Au-Si qui permirent d’atteindre des épaisseurs de plusieurs millimètres et des surfaces jusqu’à 40 cm2. La détection des photons γ nécessite des volumes plus importants qui sont aujourd’hui obtenus avec des cristaux de germanium hyperpurs pouvant atteindre 300 cm3.

Un détecteur à semi-conducteur s’apparente à une chambre d’ionisation solide : les charges créées par un rayonnement ionisant sont séparées sous l’action d’un champ électrique et le courant induit mesuré.

3.1 Caractéristiques des semi- conducteurs

Les semi-conducteurs les plus utilisés (Si, Ge) sont des éléments tétravalents. Leur conductivité (ou leur résistivité) est située entre celle des conducteurs et celle des isolants (figure 26). De même, le gap entre bandes de valence et bande de conduction dans le cas d’un cristal semi-conducteur (» 1 eV) est intermédiaire entre celui des conducteurs (0) et celui des isolants (» 6 eV).

Le tableau 5 résume les propriétés des semi-conducteurs Si et Ge.

Ci-dessus : Niveaux accepteurs (Al, Ga, In) et niveaux donneurs (As, P, Sb) dans les cristaux de silicium et de germanium (d’après )

Les porteurs de charges dans un semi-conducteur sont les électrons dans la bande de conduction et les trous dans la bande de valence. Dans un semi-conducteur intrinsèque la concentration d’électrons est égale à la concentration de trous.

La présence d’impuretés de substitution, trivalentes ou...

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Physique Chimie

(200 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Détecteurs à semi- conducteurs
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - CHARPAK (G.) et al -   *  -  Nucl. Instr. and Meth. 62 (1968) p. 235

  • (2) - MASTINU (P.F.) et al -   *  -  Nucl. Instr. and Meth. A 338 (1994) p. 419.

  • (3) - MURRAY (R.B.), MEYER (A.) -   *  -  Phys. Rev. 122 (1961) p. 815.

  • (4) -   Nouvelles du Ganil  -  no 44 (1993).

  • (5) - DESTRUEL (P.) et al -   *  -  Nucl. Instr. and Meth. A 276 (1989) p. 69.

  • (6) - SCHNEEGANS (M.A.) -   *  -  Lapp. exp. 93.07 (1993).

  • (7) - ANDERSON (D.F.) -   *  -  Nucl. Instr. and Meth. A 287 (1990) p. 606.

  • ...

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Physique Chimie

(200 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS