Mars 2021
Dix ans depuis Fukushima : quelles leçons et quelles évolutions ?
Dix ans après la catastrophe nucléaire de Fukushima, qu'en est-il du démantèlement de la centrale et des...
RECHERCHEZ parmi plus de 10 000 articles de référence ou pratiques et 4 000 articles d'actualité
PAR DOMAINE D'EXPERTISE
PAR SECTEUR INDUSTRIEL
PAR MOTS-CLES
NAVIGUER DANS LA
CARTOGRAPHIE INTERACTIVE
DÉCOUVREZ toute l'actualité, la veille technologique GRATUITE, les études de cas et les événements de chaque secteur de l'industrie.
La conception du réacteur à eau ordinaire bouillante (REB) découle de celle du réacteur à eau ordinaire sous pression (REP) développée pour la propulsion navale. Pour la production d'électricité, le réacteur n'est plus soumis aux mêmes contraintes de compacité, de résistance aux secousses. À ses débuts, le REB a été pressenti comme un réacteur de puissance moins coûteux et plus performant que le REP. Pour autant, le succès commercial n’a pas été à la hauteur de l’attente, notamment à cause de l’apparition d’un phénomène de fissuration du matériau des boucles de recirculation. Les constructeurs présentent aujourd'hui des modèles de 3e génération, à sûreté améliorée, comme l'ABWR, maintenant éprouvé au Japon, ou des modèles de conception nouvelle, intégrant des concepts de sûreté passive, comme l'ESBWR, ou le KERENA.
A la suite de l'accident de Fukushima, des évaluations ont été menées par les exploitants nucléaires français afin d'apprécier le comportement de leurs installations lors de situations extrêmes du type de celle rencontrée à Fukushima. Des dispositions complémentaires seront progressivement mises en place pour réduire les risques associées à ces situations. Ces dispositions comporteront des moyens fixes robustes, constituant le « noyau dur » permettant d'assurer la maîtrise des fonctions de sûreté des installations au moins pendant les premiers jours suivant l'accident, ainsi que des moyens mobiles pouvant être acheminés et installés sur le site par la Force d'action rapide nucléaire (FARN), constituée d'équipes entraînées aux interventions dans des conditions difficiles. Les plans d'urgence seront également adaptés pour faire face à une situation accidentelle susceptible d'affecter l'ensemble des installations d'un même site.
Le 11 mars 2011, un séisme et un tsunami dévastent le site de de Fukushima Daiichi et sont à l’origine d’un accident nucléaire majeur avec la fusion du cœur de trois réacteurs. Cet article décrit le déroulement de l’accident, mettant notamment en lumière comment les conditions extrêmes ont perturbé sa gestion et comment les installations endommagées ont été peu à peu reprises en main. Les conséquences radiologiques de l’accident sur l’environnement sont ensuite présentées : la constitution des dépôts radioactifs, la contamination des denrées alimentaires terrestres et l’atteinte du milieu marin. Enfin, l’article présente des estimations des doses susceptibles d’avoir été reçues par les populations les plus touchées non évacuées.
TECHNIQUES DE L'INGENIEUR
L'EXPERTISE TECHNIQUE ET SCIENTIFIQUE
DE RÉFÉRENCE
Avec Techniques de l'Ingénieur, retrouvez tous les articles scientifiques et techniques : base de données, veille technologique, documentation et expertise technique
Plus de 10 000 articles de référence, fiches pratiques et articles interactifs validés par les comités scientifiques
Toute l'actualité, la veille technologique, les études de cas et les événements de chaque secteur de l'industrie
Automatique - Robotique | Biomédical - Pharma | Construction et travaux publics | Électronique - Photonique | Énergies | Environnement - Sécurité | Génie industriel | Ingénierie des transports | Innovation | Matériaux | Mécanique | Mesures - Analyses | Procédés chimie - bio - agro | Sciences fondamentales | Technologies de l'information
ACCUEIL | A PROPOS | ANNUAIRE AUTEURS | EXPERTS SCIENTIFIQUES | PUBLICITÉ | PLAN DU SITE | MENTIONS LÉGALES | RGPD | COOKIES | AIDE & FAQ | CONTACT
PAIEMENT
SÉCURISÉ
OUVERTURE RAPIDE
DE VOS DROITS
ASSISTANCE TÉLÉPHONIQUE
+33 (0)1 53 35 20 20