#

Secteur aeronautique

Secteur aeronautique dans les livres blancs


Secteur aeronautique dans les conférences en ligne


Secteur aeronautique dans les ressources documentaires

  • Article de bases documentaires
  • |
  • 10 déc. 2025
  • |
  • Réf : BM3000

Propulsion aérospatiale

Les systèmes de propulsion aérospatiaux (des avions, fusées, missiles, sondes, satellites...) sont généralement de deux types : les réacteurs et les propulseurs à hélice. Les réacteurs fonctionnent grâce à l'expulsion à grande vitesse du produit de la combustion d'ergol, tandis que les autres utilisent le brassage d'un débit important de l'air ambiant (au moyen d'hélices, par exemple). Cet article présente différentes catégories de propulseurs et définit les principales grandeurs utilisées dans le domaine de la propulsion, par exemple l'impulsion spécifique ou l'indice constructif. Les grandes tendances industrielles sont également évoquées.

  • Article de bases documentaires
  • |
  • 10 déc. 2025
  • |
  • Réf : BM3002

Propulsion aérospatiale

Le choix de la méthode de propulsion spatiale s'effectue en fonction de l'utilisation souhaitée. Les propulseurs sont classés selon plusieurs critères : technologiques, fonctionnels, ou encore suivant le processus chimique de la réaction. Dans cet article sont présentés les principaux types de systèmes propulsifs aérospatiaux (turbopropulseurs, motopropulseurs, turboréacteurs, moteurs à détonation, turbofusées...), ainsi que certaines de leurs caractéristiques (type de réaction, zone d'utilisation, domaine de Mach...). Cet article s'intéresse plus particulièrement au choix de propulsion pour les missiles (antimissiles, antinavires...), suivant le type de mission réalisée.

  • ARTICLE INTERACTIF
  • |
  • 10 déc. 2025
  • |
  • Réf : E3588

Optimisation du calcul de fiabilité d’un équipement électronique

Les niveaux d’exigence de la fiabilité des équipements dans le spatial sont extrêmes. Les méthodes classiques de calcul de fiabilité appliquent uniformément un taux de défaillance à tous les composants, sans distinction de l’impact réel de leurs pannes. Cet article propose une approche d’optimisation qui consiste à ne considérer que les pannes critiques, en excluant celles dont les effets sont mineurs ou tolérables pour le système. En s’appuyant sur une analyse fonctionnelle et sur des modes de défaillance, cette méthode permet de mieux refléter la fiabilité effective des équipements, de réduire les surdimensionnements et d’optimiser les coûts et la masse embarquée.


INSCRIVEZ-VOUS AUX NEWSLETTERS GRATUITES !