Afin d’étayer les méthodes présentées dans l’article [D 3 071] « Modélisation PEEC des connexions dans les convertisseurs de puissance », une application concrète, un onduleur de 200 kVA, est modélisée. Lorsque l’on cherche des formes d’ondes en commutation dans ce type d’application, la modélisation des semi-conducteurs (transistors et diodes) est tout aussi importante que la modélisation du câblage. Toutefois, dans cet article, seule la modélisation du câblage est traitée et présentée. La simulation temporelle utilisera les modèles « standards » du logiciel SABER.
La méthode PEEC, même si elle est assez simple sur le plan conceptuel, est d’une mise en œuvre assez délicate. En effet, le maillage engendre un grand nombre d’éléments géométriques, dont il faut évaluer l’impédance et les couplages. Ces éléments doivent être réagencés dans un schéma électrique correspondant à la réalité du circuit.
Le but de cet article est donc d’indiquer comment appliquer la méthode PEEC à un cas industriel. Les auteurs tiennent à remercier vivement la société MGE UPS System qui a fourni l’exemple de l’onduleur triphasé 200 kVA [1]. Compte tenu du niveau de puissance, plusieurs éléments sont associés en parallèle : condensateurs, modules IGBT... Le câblage peut être déterminant quant à la répartition des courants dans ces composants en parallèle, ce qui justifie une étude approfondie. Par ailleurs, les commutations d’électronique de puissance à l’origine de variation de courant pouvant atteindre 5 000 A/µs, les inductances de câblage par les surtensions qu’elles engendrent doivent être caractérisées avec une grande précision.
L’article fournit des indications sur la mise en œuvre de la méthode, puis décrit l’onduleur, sa modélisation et les résultats qui peuvent en être tirés. En fin d’article, des éléments complémentaires sont donnés, traitant de cas particuliers non abordés dans l’étude de l’onduleur.