Présentation

Article

1 - PHYSIQUE DES PHÉNOMÈNES ORAGEUX : DONNÉES ACTUELLES

2 - MÉCANISME D’IMPACT ET MODÈLE ÉLECTROGÉOMÉTRIQUE

3 - EFFETS DE LA FOUDRE

  • 3.1 - Effets thermiques
  • 3.2 - Effets électrodynamiques

4 - CONCEPTION GÉNÉRALE D’UNE INSTALLATION DE PROTECTION

5 - INSTALLATION DE PROTECTION EXTÉRIEURE

6 - INSTALLATION DE PROTECTION INTÉRIEURE

7 - PARATONNERRES À DISPOSITIFS D’AMORÇAGE ET TESTS ASSOCIÉS

8 - CONCLUSION

| Réf : C3307 v2

Effets de la foudre
Foudre et protection des bâtiments

Auteur(s) : Alain ROUSSEAU, Claude GARY, Gérard BERGER

Date de publication : 10 mai 2000

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Auteur(s)

  • Alain ROUSSEAU : Ingénieur de l’École centrale de Lyon - DEA de Génie électrique - Directeur Produits ERICO

  • Claude GARY : Ingénieur de l’École supérieure d’électricité - Conseiller scientifique honoraire d’Électricité de France

  • Gérard BERGER : Ingénieur de l’École supérieure d’électricité - Docteur ès sciences - Chargé de recherches au CNRS

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

INTRODUCTION

Lorsque Benjamin Franklin inventa, en 1753, le paratonnerre à tige, il pensait que, par son effet de pointe, celui-ci était capable d’écouler à la terre le « fluide électrique » contenu dans le nuage orageux, et, par là, d’empêcher la foudre de tomber.

Généralités sur la protection contre la foudre

Cette hypothèse, encore admise par certains il n’y a pas si longtemps, ne résiste pas à l’analyse que permet la connaissance moderne des phénomènes d’ionisation. D’ailleurs, cette façon de voir fut rapidement infirmée, déjà du temps de Franklin : parmi les nombreuses tiges qu’il fit élever, cinq furent frappées par la foudre dès la première année de leur mise en place.

La seconde façon d’expliquer le rôle protecteur des paratonnerres consiste alors à considérer leur pouvoir d’attraction sur la foudre. On a cependant assez rapidement reconnu que ce pouvoir était limité à un volume relativement réduit, ce qui permet néanmoins d’assurer une certaine zone de protection autour du paratonnerre. Diverses définitions de cette zone, toutes empiriques, ont été données, généralement sous la forme d’un cône de section circulaire, d’axe vertical, et dont le sommet coïncide avec la pointe du paratonnerre. On a longtemps admis que le demi-angle au sommet de ce cône devait être de l’ordre de 45 ou 60˚. On a également représenté le contour de la zone protégée par une surface de révolution dont la génératrice était un arc de cercle tangent à la fois à la tige du paratonnerre en son sommet et à la surface au sol.

Malheureusement, ces divers modèles de protection sont encore imparfaits, car ils ne prévoient pas certains cas extrêmes. On connaît, en effet, de nombreux cas où la foudre est tombée au pied même du paratonnerre ou d’une tour élevée, ou a frappé cette tour à mi-hauteur. Ces observations ont notamment été faites auprès de tours de télévision et semblent même montrer que la concentration d’impacts est, à leur voisinage, supérieure à la moyenne de la région.

Ces exemples montrent qu’une protection parfaite contre la foudre est illusoire. Le risque encouru doit être maîtrisé. Nous montrerons dans cet article que, dans le cas où une protection absolue est nécessaire, la seule solution consiste à entourer l’objet à protéger par une cage de Faraday, à moins que l’objet ne soit lui-même en métal conducteur. Cependant, l’application qui est faite de la cage de Faraday pour la protection directe contre la foudre, la cage maillée, a une efficacité qui varie en fonction de la dimension des mailles. Parallèlement, ces dernières années ont vu apparaître de nouveaux paratonnerres [appelés PDA (paratonnerre à dispositif d’amorçage)] qui sont réputés plus efficaces que les tiges de type Franklin.

L’étude des phénomènes physiques mis en jeu par la foudre a permis d’élaborer une méthode de détermination de la zone de protection d’une tige verticale, ou de fils tendus horizontalement ; elle permet également de définir la taille maximale des mailles d’une cage. Cette méthode est fondée sur l’analyse du mécanisme d’impact de la foudre et est mise en œuvre au moyen d’un modèle mathématique appelé modèle électrogéométrique. Bien que ce modèle ne soit pas parfait – bien des incertitudes subsistent – il constitue néanmoins l’approche la plus cohérente pratiquement de la protection directe contre la foudre qui ait été élaborée à ce jour. Il permet entre autres d’expliquer pourquoi la foudre peut tomber au pied d’une tour, donc d’expliquer certains « ratés » de protection, et montre que la zone de protection dépend de l’intensité de crête du courant qui va s’écouler par le coup de foudre.

Mais, afin de pouvoir développer ce modèle et d’en préciser des applications, il est nécessaire d’étudier les phénomènes orageux et d’examiner les paramètres principaux qui caractérisent la foudre. Ce sera l’objet de la première partie de cet article.

Conception générale d’une installation de protection contre la foudre

Ce qui vient d’être dit concerne la conception traditionnelle de la protection des bâtiments et des édifices par paratonnerre ou cage maillée, qui a pour fonction d’éviter les dégâts par coups de foudre directs, et qu’il est convenu de désigner par « protection extérieure ».

Mais aujourd’hui, il existe une très nette tendance à insister, parallèlement, sur la nécessité d’installer une « protection intérieure ». En effet, depuis une dizaine d’années, les équipements électriques, l’informatique, l’audiovisuel, les télécommunications envahissent tous les domaines de l’activité humaine, comme l’industrie, l’artisanat, le tertiaire, la domotique. Le développement accéléré de ces techniques, dont les équipements ont une vulnérabilité extrême aux effets de la foudre, a induit la nécessité de nouvelles recherches sur les phénomènes orageux et sur les moyens pour se protéger contre leurs effets néfastes. Cet aspect de la protection sera également largement traité dans la deuxième partie de cet article.

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

VERSIONS

Il existe d'autres versions de cet article :

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v2-c3307


Cet article fait partie de l’offre

Le second oeuvre et l'équipement du bâtiment

(92 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

3. Effets de la foudre

En tant que phénomène électrique, la foudre peut avoir les mêmes conséquences que tout autre courant circulant dans un conducteur électrique ou que tout autre passage de courant à travers un mauvais conducteur ou un isolant. Par conséquent, on peut s’attendra aux effets suivants :

  • effets thermiques (dégagement de chaleur) ;

  • effets électrodynamiques (apparition de forces) ;

  • effets électrochimiques (décomposition galvanique) ;

  • effets acoustiques (tonnerre).

De ces quatre sortes d’effets, seuls les deux premiers jouent, en pratique, un rôle notable.

3.1 Effets thermiques

HAUT DE PAGE

3.1.1 Effets liés à la quantité de charge Q

Ce sont les effets de fusion au point d’entrée du courant de foudre dans un conducteur électrique, désignés par le terme traces d’impact.

Sur les installations de protection contre la foudre, on les observe surtout sur les pointes aiguës, où l’on constate parfois une fusion de l’extrémité de la pointe, sur quelques millimètres au maximum.

Sur des surfaces planes (tôles), on constate des traces de fusion qui peuvent, pour des tôles très minces, évoluer jusqu’au percement complet.

En supposant que la chute de tension anodique à la racine de l’arc, c’est-à-dire au contact avec le métal, reste constante et égale à u pendant toute la durée du coup de foudre, l’énergie dissipée localement s’écrira :

Exemple

avec u = 20 V et Q = 30 C, cette énergie sera de 600 J.

Un tel dégagement de chaleur peut théoriquement entraîner la fusion d’environ 60 mm3 d’acier.

Avec une trace d’impact de 25 mm de diamètre, l’effet de fusion a donc une pénétration de 0,15 à 0,25 mm, en supposant qu’aucune chaleur n’est dissipée par la masse du métal.

Sur du cuivre...

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Le second oeuvre et l'équipement du bâtiment

(92 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Effets de la foudre
Sommaire
Sommaire

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Le second oeuvre et l'équipement du bâtiment

(92 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS