Présentation

Article

1 - ÉLARGISSEMENT DE LA BANDE PASSANTE

2 - MINIATURISATION

3 - ANTENNES COMMANDÉES ÉLECTRONIQUEMENT

4 - ASSOCIATION D’ANTENNES EN RÉSEAUX

5 - QUELQUES DOMAINES D’APPLICATIONS

Article de référence | Réf : E3311 v1

Association d’antennes en réseaux
Antennes imprimées - Techniques et domaines d’applications

Auteur(s) : Cyril LUXEY, Robert STARAJ, Georges KOSSIAVAS, Albert PAPIERNIK

Date de publication : 10 août 2007

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

RÉSUMÉ

Les antennes imprimées de formes simples présentent des limitations telles qu’une faible bande passante, une directivité et un gain moyens, une taille de l’ordre de la demi-longueur d’onde, peu de flexibilité en termes de reconfiguration de polarisation, fréquence ou dépointage du faisceau rayonné, etc. Certaines techniques permettent d’améliorer une ou plusieurs de ces caractéristiques radioélectriques. Les principales applications de ces éléments rayonnants sont: communications par satellites, antennes pour l’aéronautique, téléphonie mobile, identification sans contact, antennes pour le biomédical, objets communicants, etc.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

ABSTRACT

Printed antennas with simple shapes present limitations such as a low bandwidth, an average directivity and gain, a size of the order of the half wave length, little flexibility in terms of reconfiguration or polarization, frequency or mispointing of the radiated beam, etc. Certain techniques allow for the improvement of one or more of these radioelectric characteristics. The main applications of these radiating elements are: satellite communications, antennas for the aeronautics, mobile telephony, contactless identification, antennas for the biomedical sector, communicative objects, etc.

Auteur(s)

  • Cyril LUXEY : Maître de conférences à l’Université de Nice-Sophia Antipolis Laboratoire d’Électronique, Antennes et Télécommunications, LEAT-CNRS UMR 6071

  • Robert STARAJ : Professeur des Universités à l’Université de Nice-Sophia Antipolis Laboratoire d’Électronique, Antennes et Télécommunications, LEAT-CNRS UMR 6071

  • Georges KOSSIAVAS : Professeur des Universités à l’Université de Nice-Sophia Antipolis Laboratoire d’Électronique, Antennes et Télécommunications, LEAT-CNRS UMR 6071

  • Albert PAPIERNIK : Professeur à l’Université de Nice-Sophia Antipolis Laboratoire d’Électronique, Antennes et Télécommunications, LEAT-CNRS UMR 6071

INTRODUCTION

Dans le dossier Antennes imprimées- Bases et principes, nous avons énoncé les bases et principes nécessaires à la conception d’antennes imprimées de formes simples.

Cependant, un élément de ce type présente généralement des limitations telles qu’une faible bande passante, une directivité et un gain moyens, une taille de l’ordre de la demi-longueur d’onde, peu de flexibilité en termes de reconfiguration de polarisation, fréquence ou dépointage du faisceau rayonné, etc.

Dans ce dossier, nous décrivons tout d’abord les techniques qui permettent d’améliorer une ou plusieurs de ces caractéristiques radioélectriques. Les aspects miniaturisation et mise en réseau sont également abordés. Puis sont présentées les principales applications de ces éléments rayonnants : communications par satellites, antennes pour l’aéronautique, téléphonie mobile, identification sans contact, antennes pour le biomédical, objets communicants, etc.

Pour plus de détails sur la théorie des antennes, le lecteur pourra également consulter les articles suivants du traité Électronique :

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-e3311


Cet article fait partie de l’offre

Électronique

(242 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation

4. Association d’antennes en réseaux

Les micro-ondes sont principalement utilisées dans les applications requérant une bonne directivité (télécommunications, radar, radioastronomie). Pour l’obtenir, il existe principalement deux méthodes : les antennes à réflecteur ou les antennes réseaux. En effet, le gain d’antennes telles que les dipôles ou les antennes imprimées est assez faible car le rayonnement est très peu directif. Leur association crée un réseau dont la particularité est d’avoir un gain plus élevé dans une direction privilégiée puisque la taille électrique globale de l’antenne est augmentée. Dans le cas d’une antenne directive, les diagrammes de rayonnement présentent un maximum que l’on nomme lobe principal. Les autres extrema sont appelés lobes secondaires. La largeur angulaire du lobe principal est généralement définie pour un affaiblissement de – 3 dB. On mesure l’importance des lobes secondaires par la différence en dB entre le niveau du lobe principal et celui du lobe secondaire le plus élevé .

Les réseaux possèdent surtout l’avantage de pouvoir effectuer un balayage électronique du faisceau rayonné. On peut donc, par commande électronique, pointer successivement plusieurs directions ou modeler de manière dynamique le diagramme de rayonnement. Pour des applications courantes, une loi d’alimentation simple telle que celles données dans le tableau 1 suffit.

Pour des applications plus complexes, les méthodes de synthèse du type Dolph-Chebyshev, Taylor-Mac Laurin, Woodward ou d’autres encore, basées sur des approches génétiques peuvent être mises en œuvre  ...

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Électronique

(242 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Association d’antennes en réseaux
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - BENKAMOUN (M.), KOSSIAVAS (G.), PAPIERNIK (A.) -   Éléments Rayonnants Microrubans Couplés à Un ou Deux Points d’Alimentation.  -  Proceedings des Journées Internationales de Nice sur les Antennes (JINA), p. 208-211 (1986).

  • (2) - CROQ (F.), KOSSIAVAS (G.), PAPIERNIK (A.) -   Stacked Resonators for Bandwidth Enhancement : A Comparison of Two Feeding Techniques.  -  IEE Proceedings, Part H Microwaves, Antennas and Propagation, vol. 140, no 4, pp. 303-308, août 1993.

  • (3) - ZAID (L.), KOSSIAVAS (G.), DAUVIGNAC (J.-Y), CAZAJOUS (J.), PAPIERNIK (A.) -   Dual-frequency and Broadband Antennas with Stacked Wavelength Elements.  -  IEEE Transactions on Antennas and Propagation, vol. 47, no 4, p. 654-660, avr. 1999.

  • (4) - ROGER (J.) -   Antennes. Techniques.  -  Traité d’Électronique, Techniques de l’Ingénieur, no E3284, p. 45-46.

  • (5) - RULF (B.), ROBERTSHAW (G.A.) -   Understanding Antennas for Radar, Communications, and Avionics.  -  Van Nostrand Reinhold Company ed., (ISBN : 0442277725), p. 231-268 (1987).

  • ...

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Électronique

(242 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS