Article | REF: SE2086 V1

Fire behaviour of batteries. Risks,testing and regulations

Author: Eric GUILLAUME

Publication date: January 10, 2026 | Lire en français

You do not have access to this resource.
Click here to request your free trial access!

Already subscribed? Log in!

Automatically translated using artificial intelligence technology (Note that only the original version is binding) > find out more.

    A  |  A

    Overview

    ABSTRACT

    Lithium-ion batteries (LIBs) are currently the dominant technology for energy storage (electric vehicles, stationary storage systems (BESS), household applications). However, their high energy density and the presence of flammable electrolytes generate specific risks, mainly related to the thermal runaway (TR) phenomenon. This review examines the mechanisms of TR initiation and propagation, the thermal and chemical characteristics of fires involving LIBs, the challenges associated with early detection, and recommendations for system design. Test methods and research priorities are also discussed.

    Read this article from a comprehensive knowledge base, updated and supplemented with articles reviewed by scientific committees.

    Read the article

    AUTHOR

     INTRODUCTION

    The energy transition and decarbonization of transportation and electricity generation systems have led to the widespread deployment of lithium-ion batteries, which have become the dominant technology for electrochemical energy storage. Their success is based on high energy density, good durability, and increasing competitiveness. They are now ubiquitous: electric vehicles, large-capacity stationary systems (BESS), light mobility solutions (scooters, electric bikes), and domestic applications.

    However, this widespread use comes with a specific fire and explosion risk linked to the intrinsic characteristics of these batteries: high energy storage capacity, flammable organic electrolytes, and rapid exothermic reactions in the event of failure. Unlike conventional fuels, the degradation kinetics of lithium-ion batteries are characterized by a feared phenomenon known as thermal runaway, which can lead to a massive release of heat, toxic and flammable gases, and rapid propagation from cell to cell.

    The consequences of such events are particularly critical in confined environments (parking lots, technical rooms, tunnels), where the accumulation of combustible gases and toxic species (HF, POF 3 ) can lead to delayed explosions and complicate rescue operations. Recent experience shows that battery fires not only cause significant material losses, but also have a major environmental impact due to the release of fluorinated compounds and metals in smoke and extinguishing effluents.

    Faced with these challenges, battery fire safety cannot be limited to requirements inherited from conventional fuels. It requires a thorough understanding of the mechanisms of ignition and propagation, the dynamics of gas and particle emissions, and interactions with the environment. A battery can be understood as a series of layers: cell, module, pack, system, each with its own characteristics and safety barriers that determine the overall fire behavior. Prevention strategies must combine intrinsic approaches (cell and pack design), active devices (multi-sensor detection, thermal management), compartmentalization measures, and intelligent monitoring systems incorporating artificial intelligence.

    Furthermore, the regulatory framework is evolving rapidly: IEC, UL, and ISO standards define thermal, mechanical, and electrical abuse tests, but gaps remain, particularly with regard to propagation at the pack level and the characterization of toxic emissions. Regulation (EU) 2023/1542 imposes new requirements on traceability and safety throughout the life cycle, reinforcing the need for a systemic approach covering manufacturing, transport, use, second life, and recycling.

    This article...

    You do not have access to this resource.

    Exclusive to subscribers. 97% yet to be discovered!

    You do not have access to this resource.
    Click here to request your free trial access!

    Already subscribed? Log in!


    The Ultimate Scientific and Technical Reference

    A Comprehensive Knowledge Base, with over 1,200 authors and 100 scientific advisors
    + More than 10,000 articles and 1,000 how-to sheets, over 800 new or updated articles every year
    From design to prototyping, right through to industrialization, the reference for securing the development of your industrial projects

    KEYWORDS

    lithium-ion batteries   |   Thermal runaway   |   Fire and explosion safety   |   Battery Energy Storage Systems (BESS)


    This article is included in

    Safety and risk management

    This offer includes:

    Knowledge Base

    Updated and enriched with articles validated by our scientific committees

    Services

    A set of exclusive tools to complement the resources

    Practical Path

    Operational and didactic, to guarantee the acquisition of transversal skills

    Doc & Quiz

    Interactive articles with quizzes, for constructive reading

    Subscribe now!

    Ongoing reading
    Fire behavior of batteries
    Outline