La découverte de nouveaux médicaments repose aujourd'hui sur la mise en évidence, généralement à l'échelle moléculaire, de l'interaction d'une molécule organique avec une cible pharmacologique. Cette cible est souvent une protéine, plus rarement un sucre ou un acide nucléique qui est impliqué dans le déclenchement de l'état pathologique.
Les progrès de la biologie moléculaire et de la génétique ont permis l'identification de nombreuses cibles candidates, ainsi que leur production dans des quantités suffisantes pour leur étude structurale (RMN, rayons X). Cependant, même avec ces informations, la modélisation moléculaire et la conception ab initio de molécules organiques capables d'interagir efficacement n'ont jamais pu aboutir. L'échec de ces techniques rationnelles ont conduit les chercheurs de nouveaux médicaments (mais aussi de pesticides, d'herbicides...) à aborder le problème de manière empirique.
De plus, l'évolution sans cesse croissante des capacités de criblage des sociétés pharmaceutiques et l'augmentation du nombre de cibles potentielles ont conduit à dépasser les capacités de synthèse des chimistes traditionnels. Les collections historiques des laboratoires, qui d'ailleurs souffrent de lacunes en diversité et de problèmes de réapprovisionnement, ont été épuisées par les recrutements massifs des campagnes de criblage pharmacologique. Les produits naturels peuvent encore fournir de nombreuses structures originales mais des problèmes d'origine (en grande partie la zone intertropicale), de détermination structurale et de complexité de synthèse ralentissent leur valorisation. Seule une rationalisation des méthodes de synthèse pouvait répondre à la demande croissante de nouvelles molécules.
Ainsi, au cours des cinq dernières années, la chimie combinatoire s'est imposée comme une source fondamentale de molécules originales pour la découverte de nouveaux médicaments. De ce fait, elle a été rapidement adoptée par les sociétés pharmaceutiques avec la volonté de mettre au point des procédés systématiques dans le but de réduire le temps qui sépare la caractérisation d'une nouvelle cible et la mise sur le marché d'une molécule active.
L'objet de cet article est de faire un point sur l'état actuel de cette nouvelle « philosophie chimique » et de démontrer l'enjeu qu'elle constitue. Après une présentation générale de la chimie combinatoire et des différentes techniques mises au point dans ce domaine, nous ferons un bilan des réactions chimiques actuellement exploitables. L'évolution des méthodes analytiques sera présentée, ainsi que l'apparition du concept de diversité et son évaluation par la modélisation moléculaire. Puis nous verrons comment la chimie combinatoire est intégrée au processus de découverte de nouveaux médicaments et les sociétés chez lesquelles elle a donné des résultats prometteurs. Pour conclure, quelques applications ne concernant pas le domaine pharmaceutique seront présentées.