Présentation

Article

1 - INTERACTION DES RAYONS X AVEC LA MATIÈRE

  • 1.1 - Préambule
  • 1.2 - Absorption photoélectrique
  • 1.3 - Diffusion Compton
  • 1.4 - Diffusion Rayleigh (ou diffusion cohérente)
  • 1.5 - Atténuation des rayons X par le corps humain
  • 1.6 - Absorption des rayons X par le détecteur

2 - FLUENCE DE PHOTONS ET DOSE

  • 2.1 - Dose comme mesure d'une fluence de rayons X
  • 2.2 - Dose incidente sur le détecteur
  • 2.3 - Dose absorbée par le patient
  • 2.4 - ESD : dose incidente sur le patient
  • 2.5 - AGD : average glandular dose (mammographie)
  • 2.6 - Dose-area product (DAP) : dose émise par la source

3 - RISQUES SANITAIRES LIÉS À LA DOSE

  • 3.1 - Effets déterministes
  • 3.2 - Effets stochastiques : dose équivalente et dose efficace
  • 3.3 - Exposition du personnel soignant
  • 3.4 - Limitation du concept de dose efficace

4 - SOURCES ET GÉNÉRATEURS DE RAYONS X

  • 4.1 - Fonctionnement d'une source de rayons X
  • 4.2 - Rendement de conversion et filtrage
  • 4.3 - Choix du kVp
  • 4.4 - Choix du mA · s
  • 4.5 - Cas de la mammographie
  • 4.6 - Durcissement du faisceau
  • 4.7 - Tache focale, agrandissement et FOV (Field of View)
  • 4.8 - Réalisation des sources de rayons X
  • 4.9 - Générateurs de rayons X

5 - CONCLUSION

6 - GLOSSAIRE – DÉFINITIONS

Article de référence | Réf : MED200 v1

Risques sanitaires liés à la dose
Imagerie médicale par rayons X - Dose et sources de rayons X

Auteur(s) : Thierry LEMOINE

Date de publication : 10 mars 2015

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais En anglais

RÉSUMÉ

Cet article introduit le sujet de l'imagerie par rayons X. Après une présentation succincte de la physique des phénomènes d'absorption photoélectrique et de diffusion Compton, il précise définitions et propriétés essentielles des différentes notions de dose (comprise comme une mesure physique (en Gray) ou sanitaire (en Sievert)), et décrit le fonctionnement et les propriétés des dispositifs utilisés comme sources et générateurs de rayons X,

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

ABSTRACT

This article introduces the topic of X-ray imaging through the physics of photoelectric absorption and Compton scattering. It goes on to give definitions and properties of the various notions of dose (understood as physical (measured in Grays) or sanitary (measured in Sieverts), and it describes the principle and properties of X-ray sources and generating devices.

Auteur(s)

  • Thierry LEMOINE : Directeur technique Thales Microwave & Imaging Subsystems, France

INTRODUCTION

Radiographie et radioscopie (ou fluoroscopie) sont les deux modalités d'imagerie médicale les plus anciennes et aussi les plus répandues. Leur capacité inégalée à allier résolution et pénétration des tissus biologiques fait qu'elles resteront, pour des décennies encore, parmi les plus importantes à la fois en nombre d'actes de radiologie et de coût pour les systèmes de santé. Comprendre le fonctionnement des équipements d'imagerie par rayons X est donc une nécessité pour leurs utilisateurs, et aussi pour les ingénieurs qui réfléchissent à des perfectionnements – d'autant plus que comme toute technologie d'imagerie, celle-ci est impactée par l'émergence du numérique qui offre des perspectives dont beaucoup restent à explorer ou à exploiter.

Premier d'une série de sept articles consacrés à l'imagerie par rayons X, cet article pose quelques bases physiques essentielles à leur compréhension et s'intéresse aux différentes définitions données au concept de dose, en précisant quelques ordres de grandeur propres à l'imagerie médicale. Ce terme commun désigne en effet selon le contexte une fluence de rayons X (on parle de dose incidente ou d'exposition), une énergie absorbée par des tissus ou par un détecteur (on parle de dose absorbée), ou il mesure un impact sanitaire (ce sont les doses équivalentes et efficaces). Dans une troisième section, le lecteur trouvera une description du fonctionnement des sources de rayons X et des générateurs haute tension qui leur sont associés. On conclura sur quelques perspectives technologiques pour cette famille de composants.

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

KEYWORDS

generation of X-Ray photons   |   dosimetry

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-med200


Cet article fait partie de l’offre

Technologies pour la santé

(130 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Version en anglais En anglais

3. Risques sanitaires liés à la dose

Publiés vers 2010, les chiffres suivants sont souvent cités pour souligner l'importance de la dose. Ce sont des ordres de grandeur, estimés à l'échelle du monde entier :

  • nombre d'actes de radiologie par rayons X/an : ~ 3 milliards (10 % concernent des enfants) ;

  • nombre d'actes de radiologie dentaire/an : ~ 350 millions ;

  • nombre d'actes d'imagerie nucléaire/an : ~ 37 millions ;

  • nombre d'équipements de radiologie par rayons X : ~ 1 million.

Si on prend en compte la radiothérapie (7,5 millions d'actes par an), on arrive à une dose efficace cumulée égale à 20 fois l'impact sanitaire de Tchernobyl – bien sûr réparti sur un nombre infiniment plus grand d'individus !

En matière de santé publique, on considère que les rayonnements sont ionisants au-delà de 12 eV (longueur d'onde : 0,1 mm), qui constitue la limite entre rayonnement ultra-violet et rayonnement X. Les rayonnements X durs utilisés en imagerie médicale sont donc très ionisants. La dose absorbée par chaque organe engendre des risques sanitaires de deux natures : stochastique dans tous les cas, et déterministe à très forte dose. Pour la clarté de l'exposé, nous traiterons d'abord du risque déterministe.

3.1 Effets déterministes

Les effets déterministes (ou systématiques) surviennent au-delà de certains seuils de dose absorbée, où les radiations provoquent une destruction complète et prédictible des cellules : cataracte, brûlure de la peau... Ces seuils dépendent de la nature des cellules irradiées, du volume de tissu irradié et de la radiosensibilité du patient (tableau 5).

Naturellement très exposée, la cornée est le tissu biologique le plus sensible, suivie de la peau. La radiosensibilité des cellules lymphocytes, du sperme, du système gastro-intestinal et du système nerveux est également très élevée, bien qu'il s'agisse de tissus enfouis.

Visibles au bout de quelques heures, les premiers effets sur la peau peuvent apparaître dès 2 Gy, mais les plus manifestes surviennent au-delà de 5 à 6 Gy dans la dizaine de jours suivant l'irradiation. Au-delà de 3 à 7 Gy, la dose provoque une dépilation qui peut s'avérer définitive (la dose létale pour le follicule pileux est de 16 Gy)....

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Technologies pour la santé

(130 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Risques sanitaires liés à la dose
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - PODGORSAK (E.P.) -   Radiation physics for medical physicists.  -  Springer (2010).

  • (2) - VAN METTER (R.), BEUTEL (J.), KUNDEL (H.) -   Handbook of medical imaging.  -  Physics and Psychophysics. Part. 1, SPIE Press Monograph, vol. 1 (2000).

  • (3) - WEBB (S.) -   The physics of medical imaging.  -  Taylor & Francis Editors (1998).

  • (4) - DENDY (P.P.), HEATON (B.) -   Physics for diagnostic radiology.  -  Taylor & Francis Editors (1999).

  • (5) - BUSHBERG (J.T.), SEIBERT (J.A.), LEIDHOLDT (E.M.), BONNE (J.M.) -   The essential physics of medical imaging.  -  Lippincott, Williams & Wilkins Editors LWW (2002).

  • (6) - DOWSETT (D.J.), KENNY (P.A.), JOHNSTON (R.E.) -   The physics of diagnostic imaging.  -  Hadder-Arnold Editors (2006).

  • ...

1 Sites Internet

National Institute of Standards and Technology – XCOM Photons Cross Sections Database http://www.nist.gov http://www.nist.gov/pml/data/xcom/index.cfm

Base de données Xcom http://www.nist.gov

HAUT DE PAGE

2 Annuaire

HAUT DE PAGE

2.1 Fabricants de sources et de générateurs de rayons X (liste non exhaustive)

Sources : VARIAN (US), TOSHIBA (J.), IAE (I.) PHILIPS, GE, SIEMENS, CARESTREAM (entre autres) fabriquent des sources pour leurs propres besoins.

Générateurs : CPI (US), SEDECAL (E.), IMD (I.) De nombreux équipementiers conçoivent et font réaliser leurs propres générateurs.

HAUT DE PAGE

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Technologies pour la santé

(130 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS