Les médicaments utilisés aujourd'hui en santé humaine comportent une activité pharmacologique principale, mais aussi des effets secondaires dits indésirables. Améliorer les performances du médicament en limitant ses potentiels effets toxiques revient à augmenter sa balance bénéfices/risques. Les nanotechnologies apportent des moyens d'augmenter la balance bénéfices/risques en changeant le devenir du médicament dans l'organisme. Ceci revêt un caractère très important dans le domaine des traitements anticancéreux, où l'on recherche un ciblage très fin sur les cellules tumorales et non sur les cellules saines. L'idée sous-tendue par cette stratégie thérapeutique consiste à associer la molécule active avec un vecteur qui possède des propriétés physico-chimiques (taille, charges électrostatiques de surface, hydrophilie, etc.) qui détermineront ses lieux de diffusion dans l'organisme et son élimination. Ainsi, le devenir de la molécule active, médicament, dans l'organisme, ne dépendra plus de ses propriétés chimiques propres mais de celles du vecteur. Ce concept est appelé vectorisation. Une vectorisation réussie consiste ainsi à améliorer le ciblage des molécules vers les tissus de l'organisme où l'on désire qu'elles soit actives tout en limitant leur diffusion vers les tissus pour lesquels elles pourrait être toxiques, ceci en allongeant sa durée de résidence dans les tissus d'intérêt pour prolonger l'effet pharmacologique et obtenir des médicaments plus efficaces. La mise au point d'un vecteur efficace et peu toxique repose sur la maîtrise des procédés de fabrication et de caractérisation, parfois difficiles à l'échelle nanométrique, mais aussi sur la connaissance des structures physiologiques, histologiques, biologiques et biochimiques des tissus de l'organisme. En effet, le devenir dans l'organisme du vecteur que l'on désire contrôler, pour maîtriser de fait l'action du médicament, dépendra de l'interaction entre le vecteur et le milieu vivant. Ainsi, en fonction de la voie d'administration du médicament, le vecteur sera en contact avec différents tissus et son trajet dans l'organisme pourra être différent. La discipline qui permet d'étudier le comportement d'un médicament en fonction des structures biologiques qu'il rencontre s'appelle la biopharmacie. Cet article a pour objectif de décrire les concepts particuliers de biopharmacie lorsqu'ils sont appliqués aux vecteurs de médicaments, appelés aussi nanomédecines. Une analyse du devenir des nanomédecines par voie d'administration sera proposée dans cet article afin d'éclairer le formulateur sur les structures cellulaires et tissulaires à prendre en compte pour un design rationnel et efficace des nanomédicaments.