Vers la fin des années 50, le projet d’avion supersonique civil américain volant à mach 3 a été à l’origine d’une intense activité de recherche dans le domaine des polymères thermostables. C’est en effet dans les applications aérospatiales que le gain de poids apporté par la faible masse volumique des polymères présente le plus d’intérêt. Le projet Apollo de la National Aeronautic and Space Administration (NASA) a permis ensuite d’assurer une certaine continuité dans les recherches en fédérant les travaux des groupes industriels et des universités. Mais, depuis le début des années 80, c’est l’industrie électronique dans son ensemble qui est devenue le moteur des travaux de recherche et développement sur ces polymères de haute technologie. Sous forme de films, de revêtements de protection, d’adhésifs, de matrices pour la fabrication des circuits imprimés, les polymères hétérocycliques se retrouvent dans toutes les applications de l’électronique, depuis la fabrication des semiconducteurs jusqu’au système fonctionnel (radio, télévision, radar, etc.).
La stabilité thermique des matériaux macromoléculaires est beaucoup plus faible que celle des métaux ou des composés minéraux comme le graphite, le quartz ou les céramiques. Les polymères thermoplastiques, par exemple, perdent leurs propriétés mécaniques lorsqu’ils sont chauffés au-dessus de leur température de fusion pour les polymères cristallins ou de leur température de transition vitreuse (tg) pour les polymères amorphes. Comme tous les composés organiques, les polymères ont un comportement dynamique vis‐à‐vis de la chaleur. Cela signifie que la thermostabilité se mesure non pas en fonction de la seule température mais du couple temps-température.
Par convention, les polymères sont dits thermostables s’ils peuvent être utilisés avec sécurité pendant :
-
30 000 heures à 200 oC ;
-
1 000 heures à 300 oC ;
-
10 heures à 400 oC ;
-
ou quelques minutes à 500 oC.
La résistance thermique des matériaux organiques dépend également de l’atmosphère dans laquelle ils doivent être utilisés. Si celle-ci est inerte (vide, azote, gaz carbonique, etc.), la dégradation thermique est un pur phénomène de pyrolyse et il y a rupture des chaînes macromoléculaires lorsque l’énergie thermique apportée est suffisante pour rompre les liaisons covalentes qui constituent l’épine dorsale du polymère. Par contre, dans l’air ou dans l’oxygène, ce sont les réactions d’oxydation qui deviennent prépondérantes et elles se produisent à une température nettement plus basse que celle qui est mesurée lors de la dégradation pyrolytique.