Un accumulateur est un dispositif électrochimique complexe permettant de convertir l’énergie chimique, des matériaux actifs des électrodes qui le composent, en énergie électrique. Cette dernière est mise à disposition lors de la fermeture du circuit électrique reliant ses bornes positive et négative. L’accumulateur se distingue de la pile, en cela qu’il est rechargeable électriquement, au moyen d’un courant électrique circulant en sens inverse de celui de la décharge. Les accumulateurs peuvent être regroupés en batterie afin de satisfaire les exigences d’applications de plus en plus variées, dont notre société a besoin. Des plus petits produits sans fil aux plus gros systèmes de stockage raccordés au réseau électrique, en passant par l’électrification massive du transport, une large gamme d’accumulateurs, de tailles et de technologies variées, s’active pour fournir la puissance et l’énergie requises.
Le fait qu’un accumulateur puisse spontanément délivrer un courant, dès lors que l’on relie ses bornes, n’est pas sans poser un problème de sécurité évident. Il s’agit d’une alimentation électrique non interruptible, nécessitant une formation et une habilitation électrique à partir de certains seuils de tension et de quantité de charges stockées dans l’accumulateur, afin de garantir son exploitation sans danger. Au-delà des aspects sécuritaires, comprendre pourquoi ce courant est disponible spontanément nécessite de se plonger dans des considérations théoriques issues de nombreuses disciplines scientifiques : la thermodynamique, la physique, l’électrochimie, entre autres…
Tout d’abord, il est nécessaire de comprendre ce qu’est un électrolyte, car il est un composant indispensable de l’accumulateur. Les considérations chimi-ques relatives aux ions et au solvant peuvent donner au lecteur l’impression qu’il perd son temps, en étudiant des phénomènes se produisant à une échelle d’espace si éloignée de la réalité physique du quotidien qui l’entoure. Cependant, cette étape est primordiale, car elle pose les bases de concepts qui ont des répercussions sur les limites de l’accumulateur en fonctionnement.
Ensuite, vient l’étude de l’électrode. De par le fait qu’elle est plongée dans l’électrolyte, la notion d’interface peut être introduite, et avec elle, l’apparition d’un champ électrique. On commence petit à petit à comprendre la force électromotrice à l’œuvre, et sa dépendance à l’environnement (température et pression). Nous expliquons également pourquoi un potentiel est inaccessible seul, comment une électrode de référence peut nous permettre d’y accéder indirectement, et quel est le prix à payer. Hors équilibre, c’est-à-dire quand un courant traverse l’électrode, nous montrons que son potentiel électrique chute en raison de surtensions ayant des origines bien distinctes.
Enfin, l’accumulateur dans son ensemble est traité comme un système fermé, ayant ses propres caractéristiques, déterminées par la nature des électrodes et de l’électrolyte qui le composent. Nous abordons ses limites et la possibilité d’assembler plusieurs accumulateurs en batterie pour repousser toujours plus loin les limites.