Jusque dans les années 1980-1990, les matériaux énergétiques étaient principalement employés dans les applications militaires, spatiales, et quelques applications civiles comme, par exemple, l'industrie minière.
Au début des années 1990, a émergé l'idée d'intégrer, sur les microsystèmes silicium, des matériaux énergétiques dans la perspective de disposer de micro-actionnements locaux dans des volumes extrêmement petits (inférieurs au mm3) et des forces relativement conséquentes (~ 0,1 N).
Aujourd'hui, les applications sont plus exigeantes et supposent de créer de nouvelles générations de matériaux énergétiques strictement conçus pour les applications microsystèmes : il faut assurer à la fois les performances énergétiques et la compatibilité technologique. Dans ce contexte, l'émergence des nanotechnologies ouvre, pour les matériaux énergétiques, de nouvelles perspectives encore inexplorées, celles de créer des matériaux très performants nanostructurés, c'est-à-dire où la composition et la structure sont maîtrisées à l'échelle nanométrique, sinon moléculaire. On peut espérer aussi créer des matériaux énergétiques à décomposition chimique et thermique contrôlées. Le champ à explorer est extrêmement vaste.
On peut ici utilement le réduire en considérant prioritairement les matériaux énergétiques déjà utilisés en microélectronique. Le dossier propose une exploration complète de l'apport potentiel des nanotechnologies dans le domaine des matériaux énergétiques intégrables, à partir des résultats des premiers travaux de recherche publiés.