Présentation

Article interactif

1 - SUPRACONDUCTEURS À HAUTE TEMPÉRATURE CRITIQUE

2 - SUPRACONDUCTIVITÉ

3 - JONCTIONS JOSEPHSON ET SUPERCONDUCTING QUANTUM INTERFERENCE DEVICES

4 - APPLICATIONS DES SUPRACONDUCTEURS À HAUTE TEMPÉRATURE CRITIQUE

5 - CONCLUSION

Article de référence | Réf : E1110 v2

Jonctions Josephson et Superconducting Quantum Interference Devices
Supraconducteurs à haute température critique - Physique et applications

Auteur(s) : Jérôme LESUEUR

Relu et validé le 10 sept. 2021

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

RÉSUMÉ

Les supraconducteurs sont des matériaux qui présentent des propriétés électroniques particulières en dessous d'une température dite "critique", notamment une résistance nulle et une expulsion du champ magnétique. Ces phénomènes, leur origine microscopique et les applications qui en découlent sont décrits dans cet article dédié aux supraconducteurs à haute température critique, opérant à la température de l'azote liquide. Leur structure cristallographique et leur synthèse, ainsi que leurs propriétés électroniques spécifiques sont traitées. Une revue détaillée des applications actuelles dans le domaine de l'électronique et des capteurs complète ce panorama.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

ABSTRACT

High critical temperature superconductors - Physics and applications

Superconductors are materials which display pecular electronic properties below the so-called "critical temperature" : null resistance and magnetic field explusion. These phenomena, their microscopic origin and the resulting applications are described in this article devoted to high critical temperature superconductors, functioning above liquid nitrogen temperature. This article deals with their crystallographic structure and their synthesis, together with their specific electronic properties. A detailed review of their applications for electronics and sensors follows.

Auteur(s)

  • Jérôme LESUEUR : Professeur - Laboratoire de Physique et d’Étude des Matériaux, - ESPCI Paris/CNRS/PSL, Paris, France

INTRODUCTION

La technologie contemporaine repose en très grande partie sur la maîtrise des matériaux semi-conducteurs, à partir desquels des transistors et des circuits électroniques sont fabriqués avec une intégration croissante, plusieurs milliards de transistors par puce, ainsi que des détecteurs et des émetteurs d'ondes électromagnétiques, depuis les ondes radios jusqu'à la lumière visible. Il n'est pas un domaine économique ou industriel aujourd'hui qui n'intègre ces « Technologies de l'Information et de la Communication » (ICT en anglais).

Pourtant, derrière cette domination sans partage, les dispositifs semi-conducteurs ont leur revers et surtout leur limites, qui pour certaines sont atteintes. Elles tiennent pour l'essentiel au fait qu'un dispositif semi-conducteur présente une résistance finie, qui dissipe de l'énergie par effet Joule sous l'action d'un courant d'une part, et limite la bande passante dans les composants comportant une capacité (filtre RC passe-bas) d'autre part. L'usage massif des technologies numériques s'accompagne donc d'une dépense énergétique croissante. Il s'agit d'un enjeu énergétique et environnemental majeur. Il faut donc trouver des voies plus économes en énergie pour traiter l'information, et si possible à plus haute fréquence. Pour cela, on peut changer l'architecture de base des processeurs, qui serait plus proche du fonctionnement du cerveau particulièrement économe en énergie (systèmes neuromorphiques), ou la nature même du traitement de l'information en faisant appel aux processus de cohérence quantique (ordinateurs quantiques). Une autre voie consiste à tirer partie des propriétés des matériaux supraconducteurs, qui dissipent très peu d'énergie, et peuvent être le support du traitement quantique de l'information.

Les dispositifs basés sur des métaux et/ou des semiconducteurs ont aussi des limitations quand il s'agit de détecter des ondes électromagnétiques. Le bruit Johnson associé à toute résistance impose une limite physique à la sensibilité et à la détectivité des dispositifs. Utiliser des matériaux supraconducteurs à faible dissipation serait un atout pour progresser également dans ce domaine.

Les matériaux Supraconducteurs à Haute Température Critique (SHTc) présentés dans cet article sont des alternatives intéressantes pour franchir les limites décrites ci-dessus, au moins dans un certain nombre de domaines. Découverts en 1986, ces oxydes complexes à base de cuivre (des cuprates) sont supraconducteurs à des températures supérieures à celle de l'azote liquide (77 K), contrairement aux supraconducteurs conventionnels qui le sont à celle de l'hélium liquide (4,2 K). Les systèmes cryogéniques qui produisent des températures de l'ordre de 77 K coûtent bien moins cher que leurs équivalents à 4,2 K, et sont beaucoup plus simples et miniaturisables.

Contrairement aux supraconducteurs conventionnels qui sont des métaux, les SHTc sont des oxydes, de structure cristallographique complexe qui joue un rôle clef dans les propriétés électroniques. Celles-ci sont différentes des métaux usuels, et dépendent fortement du dopage et de la chimie du matériau. L'utilisation de ces composés dans des dispositifs concrets passe donc par la maîtrise de leur synthèse, souvent à haute température, que ce soit sous forme volumique ou en couches minces. Le composé YBa2Cu3O7 sous forme de film mince est le plus utilisé dans les applications qui se développent actuellement, en particulier dans les domaines de l'électronique et des capteurs. Celles-ci reposent sur un ensemble de propriétés particulières communes à tous les supraconducteurs, décrites et expliquées dans cet article à partir des concepts de base de la supraconductivité. A l'origine se trouve un état quantique cohérent de tous les électrons de conduction, qui réagissent collectivement aux excitations extérieures. Il en résulte une absence de résistance électrique en courant continu, une électrodynamique singulière et la présence d'une bande d'énergie interdite (à l'instar de celle des semi-conducteurs) qui régit le comportement de la plupart des grandeurs physiques mesurables dans ces matériaux. De plus, on peut accéder à la cohérence quantique de l'état supraconducteur qui se manifeste à l'échelle macroscopique.

Ces caractéristiques sont utilisées pour fabriquer les briques de bases de l'électronique supraconductrice que sont les jonctions Josephson, analogues des transistors pour les dispositifs semi-conducteurs, mais qui dissipent 10 000 fois moins d'énergie (même en tenant compte de la réfrigération), et des détecteurs de champs magnétiques ultimes comme des SQUIDs (Superconducting QUantum Interference Device). De nombreux dispositifs ont été réalisés, pour la détection d'ondes électromagnétiques, le contrôle non destructif, la prospection minière ou dans le domaine biomédical par exemple, mais également pour le traitement de l'information (processeurs, amplificateurs…). Sont décrites ici principalement les applications qui se développent sur la base des SHTc, dont certaines sont commerciales.

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

KEYWORDS

superconductivity   |   high Tc superconductors   |   cryo-electronics   |   Josephson junctions

VERSIONS

Il existe d'autres versions de cet article :

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v2-e1110


Cet article fait partie de l’offre

Matériaux fonctionnels - Matériaux biosourcés

(205 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

3. Jonctions Josephson et Superconducting Quantum Interference Devices

3.1 Effet Josephson

HAUT DE PAGE

3.1.1 Équations Josephson

Lorsque l’on met en contact deux supraconducteurs au travers d’une barrière isolante, des paires de Cooper peuvent passer de l’un à l’autre par effet tunnel de manière cohérente (figure 12 a), comme l’a montré B. Josephson en 1962 .

On considère deux supraconducteurs décrits par leurs fonctions d’ondes BCS respectives :

faiblement couplés au niveau de la barrière, et reliés à un générateur de courant, dont la tension V correspond au décalage des énergies (figure 12). Selon les principes de la mécanique quantique, les fonctions d’ondes se recouvrent dans la barrière, et l’on peut calculer le courant correspondant (première équation Josephson) :

( 30 )

avec :

θ = θ1 − θ2
 : 
différence de phase entre les deux supraconducteurs,
Ic
 : 
courant maximum qui peut circuler sans dissipation.

Pour I > I c, une tension V se développe, qui fait tourner la différence de phase θ à vitesse constante, selon l’expression (seconde équation...

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

TEST DE VALIDATION ET CERTIFICATION CerT.I. :

Cet article vous permet de préparer une certification CerT.I.

Le test de validation des connaissances pour obtenir cette certification de Techniques de l’Ingénieur est disponible dans le module CerT.I.

Obtenez CerT.I., la certification
de Techniques de l’Ingénieur !
Acheter le module

Cet article fait partie de l’offre

Matériaux fonctionnels - Matériaux biosourcés

(205 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Jonctions Josephson et Superconducting Quantum Interference Devices
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) -   *  -  https://commons.wikipedia.org/wikiFile :Timeline_of_Superconductivity_from_1900_to_2015.svg. In : (2021).

  • (2) - BEDNORZ (J.G.), MÜLLER (K.A.) -   Possible highT c superconductivity in the Ba La Cu O system.  -  In : Zeitschrift Fur Physik B-Condensed Matter 64, p. 189 (1986).

  • (3) - SEIDEL (P.) -   Applied Superconductivity.  -  Wiley-VCH (2015).

  • (4) - WU (M.K.) et al -   Superconductivity at 93 K in a newmixed-phase Y-Ba-Cu-O compound system at ambient pressure.  -  In : Physical Review Letters 58, p. 908 (1987).

  • (5) - WESCHE (R.) -   Physical Properties of High-Temperature Superconductors.  -  Wiley (2015).

  • (6) -   *  -  https://en.wikipedia.org/wiki/Pseudogap. In : (2021).

  • ...

1 Sites Internet

Supraconductivité

http://www.supraconductivite.fr

https://fr.wikipedia.org/wiki/Supraconductivite

European Society for Applied Superconductivity (ESAS)

http://www.esas.org/

HAUT DE PAGE

2 Annuaire

HAUT DE PAGE

2.1 Constructeurs – Fournisseurs – Distributeurs (liste non exhaustive)

– Films minces SHTc :

Ceraco GmbH, Allemagne ( https://www.ceraco.de)

– SQUIDs, capteurs, détecteurs en SHTc et SBTc, fonderie, systèmes cryogéniques :

STARcryoelectronics, États-Unis ( https://starcryo.com)

Tristan Technologies, États-Unis ( http://tristantech.com)

Supracon, Allemagne ( http://www.supracon.com)

Magnicon, Allemagne ( http://www.magnicon.com)

– Cryogénérateurs, systèmes cryogéniques :

Thales Cryogenics, France ( https://www.thales-cryogenics.com/)

Stirling...

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Matériaux fonctionnels - Matériaux biosourcés

(205 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Sommaire

QUIZ ET TEST DE VALIDATION PRÉSENTS DANS CET ARTICLE

1/ Quiz d'entraînement

Entraînez vous autant que vous le voulez avec les quiz d'entraînement.

2/ Test de validation

Lorsque vous êtes prêt, vous passez le test de validation. Vous avez deux passages possibles dans un laps de temps de 30 jours.

Entre les deux essais, vous pouvez consulter l’article et réutiliser les quiz d'entraînement pour progresser. L’attestation vous est délivrée pour un score minimum de 70 %.


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Matériaux fonctionnels - Matériaux biosourcés

(205 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS