Présentation

Article

1 - DÉCOUVERTE DE L'INVAR ET PREMIERS DÉVELOPPEMENTS

  • 1.1 - Mesure des longueurs et géodésie
  • 1.2 - Alliages à dilatation faible et contrôlée et bilames
  • 1.3 - Mesure du temps
  • 1.4 - De la « métallurgie quantitative » à la « métallurgie de précision »

2 - EFFET INVAR

3 - QUELQUES EXEMPLES D'APPLICATION DE L'INVAR

4 - FABRICATION DE L'INVAR

  • 4.1 - Élaboration
  • 4.2 - Transformation à chaud
  • 4.3 - Transformation à froid
  • 4.4 - Mesure de la dilatation

5 - PERSPECTIVES

6 - CONCLUSIONS

Article de référence | Réf : N2750 v1

Effet Invar
Invar - Famille d'alliages fonctionnels

Auteur(s) : Gérard BÉRANGER, Jean-François TIERS, François DUFFAUT

Date de publication : 10 oct. 2009

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

RÉSUMÉ

La découverte de l'alliage de fer à 36 % de nickel, dit Invar®, a répondu à de nombreuses attentes, notamment celle des métrologues. En effet, le nom d'Invar lui a été donné à cause de son très faible coefficient de dilatation linéique sur une assez large plage de température, ce qui lui confère une invariance dimensionnelle. Depuis sa découverte, de nombreux travaux ont été effectués en physique du solide pour tenter de comprendre cette anomalie dilatométrique, dont sont pourvus également les alliages de compositions voisines à 30 % de nickel. Ces études ont montré, s'il en était besoin, le lien étroit qui existe entre cette science et la métallurgie. Elles ont permis la naissance de matériaux apparentés à l’invar, possédant des propriétés bien ciblées et pouvant prétendre à de nombreuses applications.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

ABSTRACT

The discovery of the Invar®, a 36% nickel iron alloy, has responded to a significant number of needs, notably that of meteorologists. Indeed, it was given its name due to its extremely low coefficient of linear expansion on a rather large scale of temperature, which provides it with dimensional invariance. Since its discovery, a significant amount of work has been carried out in solid-state physics in order to try and understand this dilatometric anomaly which can be also found in similar 30% nickel alloys. These studies have confirmed the existence of a close link between this science and metallurgy. They have allowed for the production of Invar related materials, presenting specific properties and which can be used in many applications.

Auteur(s)

INTRODUCTION

Dans la nature, aussi bien que dans les réalisations faites par l'homme, on constate que les matériaux, qu'il s'agisse des roches, verres, bois, bétons, eau, matières plastiques, métaux et alliages, etc., ont, sous l'effet de variations thermiques liées soit au climat, soit au fonctionnement des installations, une propension à changer de longueur ; ainsi, ils se dilatent si la température augmente ou se contractent si elle diminue. Un exemple remarquable est le mercure dont la dilatation thermique élevée (0,18 10–3/ oC) a permis la fabrication des premiers thermomètres. Dans les matériaux solides, ces variations dimensionnelles provoquent des déformations temporaires, voire définitives, qui peuvent avoir des conséquences fâcheuses. Dans certains cas, on pallie ces conséquences à l'aide de joints ou de soufflets de dilatation, suivant les secteurs considérés. De même que les chercheurs sont en quête de matériaux non-corrodables (dans un milieu donné), ils ont depuis longtemps souhaité mettre au point des matériaux non dilatables (au moins sur une certaine plage de température). Cet objectif a pris toute son importance en métrologie quand il a fallu disposer d'étalons de longueur et, en particulier, d'étalons secondaires. La découverte de l'alliage de fer à 36 % de nickel, dit Invar®, a permis de répondre à cet objectif. Ce nom d'Invar lui a été donné à cause de son très faible coefficient de dilatation linéique sur une assez large plage de température, ce qui lui confère une invariance dimensionnelle.

Le nom d'Invar évoque une belle histoire métallurgique ; dans cette appellation sont confondus l'alliage Fe-Ni 36 et l'effet physique qui confère à l'alliage sa stabilité dimensionnelle. En fait, la découverte de l'Invar, due au hasard selon certains historiens des sciences, n'aurait pas été possible sans le travail persévérant et rigoureux d'un physicien et métrologue, Charles-Édouard Guillaume, qui a su associer, de façon harmonieuse et complémentaire science et industrie (cf. Aperçu historique, § 1). En effet si, selon Pierre Chevenard, « il serait vain de méconnaître le rôle du hasard, ce grand pourvoyeur des inventions », il fallait ensuite assurer le développement fécond de cette découverte de l'Invar. La mise en évidence du coefficient de dilatation très faible (voisin de 10–6oC à 20 oC) permettait de réaliser le rêve de tout métrologue : l'obtention d'un étalon de mesure de longueur à un prix bien moindre que celui de l'étalon en platine à 10 % d'iridium. Si ce dernier était convenable pour l'obtention du mètre-étalon de longueur, dit primaire, il ne pouvait convenir pour celle d'étalons secondaires à fabriquer en grand nombre.

Après le hasard, il fallait donc laisser place à l'étude pour comprendre la physique qui était derrière cette anomalie dilatométrique de l'alliage Invar ou d'alliages de compositions voisines à 30 % de nickel. L'idée était de donner une solution à un problème donné, à savoir l'invariance dimensionnelle, en s'appuyant, selon E. Lambret (cf. Invar- Famille d'alliages fonctionnels[Doc. N 2 750]), sur « les éléments que l'on a amassé lors des recherches antérieures, ce qui implique de bâtir des connaissances de plus en plus riches et précises ». Cette méthodologie, qui vise à répondre à une demande claire du client, est à l'origine de l'essor, grâce à Pierre Chevenard, de la métallurgie dite de précision, expression souvent utilisée pour l'Invar et ses alliages apparentés, métallurgie qui a été et est encore l'apanage de la Société Imphy (sous ses différents vocables).

L'effet Invar : le comprendre pour le maîtriser, tel était l'objectif. Depuis la découverte en 1896 faite par Charles-Édouard Guillaume, de nombreux travaux ont été effectués en physique du solide, ce qui a montré, s'il en était besoin, le lien étroit qui existe entre cette science et la métallurgie ; cette dernière vise à préparer de façon éclairée et contrôlée des alliages dotés d'un ensemble de propriétés physiques, mécaniques et chimiques, ce qui oblige en pratique à procéder à des ajustements, voire parfois de recourir à une démarche d'optimisation. Il est intéressant de remarquer que l'alliage Invar a, dans cet esprit, donné naissance à des matériaux apparentés aux propriétés bien ciblées et donc à de nombreux secteurs d'applications. C'est en plaçant la recherche au cœur de l'industrie qu'une telle richesse a pu s'exprimer et porter tous ses fruits.

Parler de l'Invar c'est une occasion de rendre hommage à de grands métallurgistes et en particulier ici à ceux qui ont été les premiers promoteurs de la métallurgie des alliages de fer et de nickel comme Charles-Édouard Guillaume et Pierre Chevenard, déjà cités, et Henri Fayol. L'héritage métallurgique qu'ils ont transmis à leurs successeurs a été non seulement respecté mais aussi développé puisque d'autres alliages ont été mis au point avec succès en élargissant le champ des applications avec un dynamisme industriel qui se poursuit.

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-n2750


Cet article fait partie de l’offre

Étude et propriétés des métaux

(199 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

2. Effet Invar

Un certain nombre de propriétés physico-chimiques et mécaniques peut s'expliquer en considérant les forces d'interaction entre les atomes. Une approche simpliste pour illustrer ce propos consiste à ne considérer que deux atomes, i et j, qu'ils soient identiques ou différents ; éloignés l'un de l'autre et que l'on va rapprocher. L'énergie d'interaction entre les atomes métalliques (liaison métallique) peut être estimée par analogie avec le cas des liaisons covalentes. Pour ces dernières, les forces sont centrales, c'est-à-dire orientées dans la direction de la liaison entre les deux atomes. Compte tenu de la distribution spatiale des charges électriques (électrons et protons) propres à chaque atome, lors de ce rapprochement, il y a une force attractive électrostatique résultant des charges de signes opposés et une force répulsive qui se manifeste à courte distance entre les charges de même signe. Les énergies d'attraction Ua et de répulsion Ur sont données par les formules générales :

L'énergie résultante U est :

A et B sont des constantes de signes contraires ; en général l'exposant m est égal à 6, quant à n, il est compris entre 10 et 12 ; si n = 12, le potentiel est dit de Lennard et Jones.

La courbe (figure 2) qui donne l'évolution de l'énergie en fonction de la distance d entre ces deux atomes i et j, U = f (d ) (somme algébrique des énergies d'attraction et de répulsion) passe par un minimum qui correspond à la position où les forces d'attraction et de répulsion se compensent parfaitement : la résultante des forces y est nulle. Ce minimum traduit le fait qu'à la température de 0 K, un atome occupe une position d'équilibre (au repos) bien définie par rapport à l'autre atome, position à laquelle correspond une distance relative d0 (distance interatomique) entre les deux atomes.

Cette courbe dans la région...

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Étude et propriétés des métaux

(199 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Effet Invar
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - BÉRANGER (G.), DUFFAUT (F.), MORLET (J.), TIERS (J.F.) -   Les alliages de fer et de nickel.  -  Lavoisier, Tec. & Doc. (1996).

  • (2) - BÉRANGER (G.), HENRI (G.), LABBÉ (G.), SOULIGNAC (P.) -   Les aciers spéciaux.  -  Lavoisier, Tec. & Doc. (1997).

  • (3) - BAÏLON (J.P.), DORLOT (J.M.) -   Des matériaux.  -  Presses internationales Polytechnique (2000).

  • (4) - BÉRANGER (G.), DUFFAUT (F.), MORLET (J.), TIERS (J.F.) -   Les alliages de fer et de nickel.  -  Lavoisier, Tec. & Doc. (1996).

  • (5) - LAMBRET (E.), SAINDRENAN (G.) -   Cent ans d'Invar.  -  Isitem (1995).

  • (6) - TROSTEL (H.), TIERS (J.F.) -   Les bilames thermostatiques.  -  « Cent ans après la découverte de l'Invar, les alliages de fer et de nickel », Éditions Lavoisier, p. 378-398 (1996).

  • ...

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Étude et propriétés des métaux

(199 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS