La hiérarchie de structure des fibres lignocellulosiques permet l’extraction de particules de taille nanométrique. Ces nanoparticules appelées nanocellulose ou nanomatériaux cellulosiques englobent essentiellement les nanofibrilles de cellulose (CNF – Cellulose NanoFibrils) obtenues par voie mécanique et les nanocristaux de cellulose (CNC – Cellulose NanoCrystals) obtenus par voie chimique. La cellulose est l’élément de structure des végétaux supérieurs. Il est donc logique que la principale application visée pour les nanoparticules cellulosiques soit sous forme d’élément de renfort de nanocomposites polymères. De nombreuses techniques, à la fois expérimentales et théoriques, ont été utilisées pour déterminer le module de Young des matériaux nanocellulosiques . Une large gamme de valeurs a été rapportée. Cependant, la valeur moyenne du module est d’environ 100 GPa pour les CNF et 130 GPa pour les CNC . Ces valeurs sont conséquentes et tout à fait compatibles avec l’élaboration de matériaux nanocomposites haute performance. De plus, le module spécifique, c’est-à-dire le module normalisé par rapport à la densité du matériau, est souvent utilisé. En prenant en compte la densité de la cellulose cristalline (1,5-1,6 g.cm−3), on trouve des valeurs de module spécifique de l’ordre de 65 J.g−1 et 85 J.g−1 pour les CNF et CNC, respectivement, nettement supérieures à celles de l’acier et du même ordre de grandeur que celle du Kevlar .
L’utilisation de nanocellulose comme « nano-additif » dans une formulation polymère permet non seulement d’améliorer les propriétés mécaniques du matériau, mais également les propriétés de barrière ou de résistance au gonflement. L'introduction de nanomatériaux cellulosiques dans les matériaux nanocomposites a été identifiée comme l'une des quatre plus grandes découvertes depuis 2000 dans le rapport « Nanotechnology Research Directions for Societal Needs in 2020 » et l’utilisation généralisée dans les nanotechnologies de matières premières renouvelables et abondantes comme étant le « Saint Graal » à atteindre et l’obstacle à surmonter d’ici 2020.
Dans cet article, les différentes méthodes de préparation de matériaux nanocomposites à matrice polymère et renfort nanocellulose sont tout d’abord présentées. Les propriétés mécaniques des matériaux résultants sont ensuite abordées. L’influence de paramètres comme la morphologie des nanoparticules, le procédé de mise en œuvre, ainsi que la microstructure de la matrice et les interactions matrice-renfort sont développées. Enfin, les propriétés de gonflement et barrière de ces matériaux sont brièvement présentées.