Présentation

Article

1 - DOMAINE DE TEMPÉRATURE DE LA CRYOGÉNIE

2 - CYCLES EN CASCADE

3 - LIQUÉFACTION DES GAZ

4 - EFFETS THERMOMAGNÉTIQUES

5 - CONCLUSIONS ET PERSPECTIVES

| Réf : BE8097 v2

Effets thermomagnétiques
Production de froid et revalorisation de la chaleur : machines cryogéniques

Auteur(s) : Michel FEIDT

Date de publication : 10 oct. 2005

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

RÉSUMÉ

Cet article a pour objet la cryogénie, c’est-à-dire la production et l’utilisation de très basses températures. Différents moyens pour atteindre ces basses températures sont présentés, notamment la cascade de fluides judicieusement choisie, le cycle de Stirling avec l’air liquide, puis l’hélium liquide (fluide frigorigène souffrant de rareté). Sont ensuite abordés les principes de la désaimantation nucléaire, puis celui de la machine frigorifique magnétique, avant d’évoquer quelques perspectives sur ce sujet très loin d’être épuisé.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

Auteur(s)

  • Michel FEIDT : Ingénieur physicien de l’Institut national des sciences appliquées de Lyon - Docteur ès sciences - Professeur à l’université Henri-Poincaré (Nancy)

INTRODUCTION

Cette étude s’intéresse tout particulièrement à la production et l’utilisation des très basses températures ; le domaine considéré est classiquement appelé cryogénie.

Les basses températures correspondantes (typiquement inférieures à – 100 oC) nécessitent soit de recourir à des techniques différentes de celles imposées dans les deux études précédentes Production de froid et revalorisation de la chaleur : principes généraux et Production de froid et revalorisation de la chaleur : machines particulières, soit de faire appel à de nouveaux principes physiques. Les deux approches sont examinées dans le présent document.

On remarquera ici que la revalorisation de la chaleur à haute température, qui est le pendant de la cryogénie, reste un domaine peu exploré, qui mériterait sans doute plus de considération ; ce sujet ne sera qu’évoqué ici, pour préserver la symétrie formelle.

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

VERSIONS

Il existe d'autres versions de cet article :

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v2-be8097


Cet article fait partie de l’offre

Froid industriel

(50 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation

4. Effets thermomagnétiques

4.1 Principes fondamentaux

L’entropie d’un solide magnétique est la somme de deux contributions : une contribution magnétique due au désordre directionnel des moments magnétiques et la contribution des vibrations thermiques du réseau cristallin (phonons) que l’on retrouve dans tous les solides.

En appliquant une induction magnétique B à température constante, on réduit l’entropie magnétique SM de la même manière que l’on réduit l’entropie d’un gaz par compression isotherme.

En valeur algébrique, on a :

avec :

M
 : 
moment magnétique associé à B.

mais on ne modifie en rien la contribution du réseau.

La capacité thermique du matériau à induction constante CB est, elle aussi, la somme de deux contributions : l’une magnétique et l’autre due au réseau. Cette dernière représente une charge thermique passive qui limite l’abaissement de température :

que l’on peut obtenir par désaimantation adiabatique. La méthode ne présente d’intérêt que si la contribution magnétique à l’entropie est au moins comparable à la contribution du réseau. Cette éventualité peut se présenter à la température ambiante quand le solide présente une transition d’ordre magnétique dans cette région.

C’est, par exemple, le cas du gadolinium métallique dont le point de Curie est à 293 K. À cette température, une induction de 7 T réduit l’entropie magnétique de ΔSM /R = 0,25 pour une mole ; mais cette réduction ne représente qu’environ 30 % de l’entropie totale et l’intervalle de température accessible est d’environ 10 K seulement.

La situation est tout à fait différente à basse température quand l’entropie du...

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Froid industriel

(50 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Effets thermomagnétiques
Sommaire
Sommaire

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Froid industriel

(50 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS