Présentation

Article

1 - SYSTÈMES ÉLÉMENTAIRES À MANIPULATION MANUELLE

  • 1.1 - Plein et creux
  • 1.2 - Précision
  • 1.3 - Graduation en hauteur et /ou en volume
  • 1.4 - Manipulation
  • 1.5 - Jauges approuvées

2 - SYSTÈMES DE MESURE PAR PESAGE

3 - SYSTÈMES À RADIO-ISOTOPES

4 - SYSTÈMES À EFFET OPTIQUE

5 - SYSTÈMES DE MESURE PAR CAPACITÉ ÉLECTRIQUE

6 - SYSTÈMES DE MESURE PAR ONDES SONORES OU ULTRASONORES

7 - SYSTÈMES À MICRO-ONDES

8 - DÉTECTEURS À LAMES VIBRANTES

9 - SYSTÈMES À PALPEUR

10 - SYSTÈMES DE MESURE PAR CONDUCTIVITÉ OU RÉSISTIVITÉ ÉLECTRIQUE

| Réf : R2011 v1

Systèmes à effet optique
Contrôle de niveaux - Systèmes pour liquides ou solides

Auteur(s) : Michel RICHARD

Date de publication : 10 mars 2003

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Auteur(s)

  • Michel RICHARD : Ingénieur de l’École nationale supérieure de céramique industrielle

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

INTRODUCTION

Dans un premier article Contrôle de niveaux- Introduction, les notions de base nécessaires à la compréhension des méthodes de mesure des niveaux ont été présentées. Certaines méthodes peuvent s’appliquer à la mesure de niveaux de liquides aussi bien que de solides. Elles sont présentées ici. Par la suite, les méthodes particulières aux niveaux liquides seront introduites dans l’article Contrôle de niveaux- Systèmes propres aux liquides, puis celles qui ne s’appliquent qu’aux niveaux de solides dans l’article Contrôle de niveaux- Systèmes propres aux solides. Enfin, l’article Comparatif des méthodes de mesure et de détection de niveaux[R 2 014] comprend des tableaux comparatifs des techniques présentées dans les quatre autres articles. Ils constituent un outil de choix pour sélectionner la ou les méthodes les plus appropriées pour chaque cas particulier.

La documentation « Pour en savoir plus » contient un tableau très complet des fabricants et constructeurs d’appareils de mesure et de détection.

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

VERSIONS

Il existe d'autres versions de cet article :

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-r2011


Cet article fait partie de l’offre

Mesures physiques

(119 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

4. Systèmes à effet optique

4.1 Principe de mesure

Un faisceau lumineux (longueur d’onde λ : de l’ultraviolet λ > 50 nm à l’infrarouge λ < 1 mm) peut être interrompu, dévié, réfracté, réfléchi, atténué, diffusé lorsqu’un obstacle, tel un liquide ou un solide en vrac, vient s’interposer sur son parcours : tous ces phénomènes peuvent offrir une solution pour la détection d’une interface.

Le système le plus simple, à occultation de faisceau, comporte une source lumineuse, le milieu à analyser, le récepteur-détecteur. En outre, s’agissant de liquides ou de produits en vrac, il faut des hublots transparents. Un filtre peut être interposé pour travailler sur un domaine étroit de longueur d’onde et augmenter ainsi la sélectivité de la méthode.

La lumière du jour, au spectre large, est un facteur perturbateur, de même que les éclairages d’ambiance. De nombreux systèmes optiques sont d’autant plus fiables qu’ils opèrent dans le noir, ce qui n’est pas toujours possible. Pour éliminer l’influence du jour ou de l’éclairage, l’émission de la source peut être modulée à une fréquence fixe, différente de 50 Hz, et le récepteur est muni d’un filtre dont la bande passante est centrée sur cette fréquence. Il permet ainsi une excellente discrimination par rapport aux sources d’éclairement parasites.

Des sources communément utilisées sur de faibles distances sont les diodes électroluminescentes (LED), qui couvrent visible et infrarouge, sont simples, fiables, peu coûteuses, mais peu puissantes. Comme détecteurs, on trouve les photorésistances, les photodiodes, les phototransistors qui constituent l’élément de base de l’électronique, et sont aussi simples, fiables, bon marché et ont une sensibilité extrême.

Dans les cas difficiles, il existe des sources lumineuses plus puissantes couvrant l’ensemble du spectre : lampes au deutérium, au mercure, au mercure dopé au phosphore (ultraviolet), aux halogènes, au tungstène (infrarouge), émetteurs laser.

Des verres permettent le passage des divers rayonnements, comme le quartz UV, les cristaux de séléniure de zinc, le verre de silice, les cristaux de fluorure de calcium, etc.

Le photomultiplicateur est un récepteur fiable et très sensible.

Les méthodes optiques non invasives trouvent quelques emplois privilégiés...

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Mesures physiques

(119 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Systèmes à effet optique
Sommaire
Sommaire

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Mesures physiques

(119 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS