La tenue en tension est due au caractère diélectrique des matériaux qui séparent deux régions de l'espace portées à des potentiels électriques différents, et qui empêche l'écoulement des charges d'une région vers l'autre. Généralement, cette différence de potentiel est transmise ou générée entre deux électrodes. Cependant, elle peut apparaître naturellement dans l'atmosphère entre deux nuages ou entre les nuages et la Terre, conduisant – sous certaines conditions – à la génération de la foudre. On en déduit que le gaz atmosphérique n'est pas un isolant électrique de très grande qualité, bien qu'il puisse supporter plusieurs dizaines de kilovolts par mètre [D 2 530].
Une façon d'améliorer la tenue à la haute tension entre deux électrodes est d'abaisser la pression jusqu'à des valeurs bien inférieures à la pression atmosphérique, autrement dit de plonger ces électrodes dans le vide. En fait, malgré la très forte énergie cinétique récupérée par les particules chargées (essentiellement des électrons à l'état libre) du champ électrique, la probabilité de collision de ces particules énergétiques avec les autres molécules de gaz résiduel présentes dans l'espace inter-électrodes diminue exponentiellement avec l'abaissement de la pression. Ainsi, le vide présente un caractère isolant lorsqu'il est sujet à un champ électrique très intense, pouvant dépasser dans certains cas les propriétés des diélectriques solides ou liquides.
L'importance de tenir des très hautes tensions (quelques mégavolts environ) sur quelques centimètres est une contrainte très forte sur les lignes haute tension. Pour prévenir le passage à l'arc, ces lignes ont, pour la plupart, l'espace inter-électrodes rempli de liquide diélectrique ou de gaz électronégatifs (par exemple SF6) à haute pression (~ 10 bar). Ne serait-ce que pour des raisons environnementales, on se doit d'examiner les possibilités alternatives de transmettre des fortes puissances sur les longues distances, surtout s'il s'agit d'une tension continue, afin d'alimenter des accélérateurs, des bobines supraconductrices, etc.
Dès lors que le champ électrique devient très important entre les deux électrodes, des phénomènes nouveaux apparaissent à la surface des électrodes, dont le plus connu est l'émission électronique sous l'effet de champ. Si la multiplication de ces électrons libres est possible, alors le système peut dégénérer vers un arc électrique sous vide [D 2 820] [D 2 870].
L'objectif de cet article est de donner un aperçu de la plupart des mécanismes fondamentaux qui conditionnent l'apparition du claquage sous vide et de présenter les avancées dans la modélisation de ces phénomènes avec des implications fortes sur le plan scientifique (accélérateurs, installations de fusion, laser à électrons libres, etc.) et industriel (éclateurs sous vide, tubes électroniques, etc.).
Dans un premier temps, les mécanismes d'émission électronique par une surface libre à l'interface avec le vide sont introduits (§ 1). Les différentes configurations géométriques conduisant au claquage et les moyens pratiques d'amélioration de la tenue aux hautes tensions sous vide sont présentés (§ 2). Les modèles les plus aboutis pour expliquer le claquage sont exposés ainsi que la comparaison avec les résultats expérimentaux (§ 3). Enfin, les principales applications exploitant l'émission sous vide sont énumérées (§ 4).
Quelques rappels
• La tension entre deux points (bornes) est la différence de potentiel électrique.
• Le diélectrique est un matériau le plus souvent solide ou liquide de grand gap (bande électronique interdite) capable de stocker de l'énergie électrostatique, autrement dit présentant un écart en énergie considérable entre la bande de valence et la bande de conduction (plusieurs eV) avec une très forte polarisabilité.
• Le vide, d'un point de vue technologique, désigne les très basses pressions, inférieures, voire très inférieures (allant jusqu'à 10-13 bar) par rapport à la pression atmosphérique (1 bar). Il y a d'autres acceptions du vocable « vide ». Il signifie le manque de matière, le néant, en philosophie ; alors qu'en mécanique quantique ou en physique des très hautes énergies, il est l'état d'énergie nulle du champ électromagnétique. Dans la suite de cet article, le terme « vide » sera toujours employé pour signifier une atmosphère gazeuse très raréfiée.