Article de référence | Réf : NM200 v1

Cohésion des nanoparticules : approche thermodynamique
Les nanoparticules inorganiques

Auteur(s) : Michel WAUTELET

Date de publication : 10 oct. 2004

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

RÉSUMÉ

Les nanoparticules sont des particules aux dimensions de l’ordre du nanomètre ou au dessous, étudiées et manipulées par les nanosciences et les nanotechnologies. Afin de réduire les effets indésirables dus aux différentes propriétés physiques, à l’échelle nanométrique comme macroscopique, l’étude de ces nanoparticules est nécessaire. Cet article donne dans un premier temps quelques définitions, puis décrit la structure atomique de ces particules (atome à l’amas, nombres magiques, fullerènes, etc). Une approche thermodynamique est ensuite proposée grâce à l’analyse de la fusion des nanoparticules et aux diagrammes de phase. La notion de transfert thermique est par la suite abordée.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

ABSTRACT

Nanoparticles are particles with dimensions of the order of the nanometer or below, which are studied and handled by nanosciences and nanotechnologies. In order to reduce undesired effects due to the various physical properties at the nanoetric and macroscopic scale, the study of these nanoparticles is necessary. This article starts by providing a few definitions and proceeds by describing the atomic structure of these particles (atom clusters, magic numbers, fullerenes, etc.). A thermodynamic approach is then presented via the analysis of the fusion of nanoparticles and phase diagrams. The notion of thermal transfer is then dealt with.

Auteur(s)

INTRODUCTION

Des effets négligeables à notre échelle macroscopique jouent un rôle essentiel à l'échelle nanométrique, et réciproquement. Diverses propriétés physiques particulières des nanoparticules inorganiques se manifestent lorsque leur taille atteint environ 10 nm.

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-nm200


Cet article fait partie de l’offre

Nanosciences et nanotechnologies

(151 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation

3. Cohésion des nanoparticules : approche thermodynamique

Lorsque N atteint plusieurs milliers, les calculs de cohésion dépassent les capacités des ordinateurs. Le recours à l'approche thermodynamique est alors nécessaire.

La description thermodynamique des nanoparticules repose sur l'évaluation de leur énergie libre G  (T  ). Pour que la théorie thermodynamique s'applique, il faut que N soit suffisamment grand et que la surface de la particule soit caractérisée par une valeur unique de la tension superficielle γ. Cela est vérifié lorsque le rayon de la nanoparticule R est supérieur à environ 3 nm . Cette approche est discutée dans .

3.1  Fusion des nanoparticules

Le cas de la fusion est connu depuis longtemps. Dans la plupart des matériaux solides inorganiques, γ est pratiquement indépendant de la température. Dans ces conditions, la température de fusion de la nanoparticule Tm varie en fonction de R :

( 2 )

avec :

Tm, ∞
 : 
température de fusion habituelle (échelle macroscopique).

La variation linéaire de Tm avec R–1 a été mise en évidence expérimentalement dans le cas de métaux et de semi-conducteurs. Les matériaux inorganiques sont caractérisés par une constante α positive, comprise entre 0,4 et 3,3 nm.

Plusieurs expressions du paramètre α, basées sur des modèles divers, ont été proposées. La plus connue est l'expression originelle de Pawlow (1909), réévaluée par Hanszen en 1960 :

...

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Nanosciences et nanotechnologies

(151 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Cohésion des nanoparticules : approche thermodynamique
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - TIMP (G.L.) (éd.) -   Nanotechnology.  -  Springer (1999).

  • (2) - WAUTELET (M.) (éd.) -   Les Nanotechnologies.  -  Dunod (2003).

  • (3) - BHUSHAN (D.) (éd.) -   Springer Handbook of Nanotechnology.  -  Springer (2004).

  • (4) - SUGANO (S.) -   Microcluster Physics.  -  Springer-Verlag (1991).

  • (5) -   *  -  The Nanotube Site. http://www.nanotube.msu.edu

  • (6) - CARPICK (R.W.), SALMERON (M.) -   *  -  Chem. Rev., 97, 1163 (1997).

  • (7) - YACAMAN (M.J.), ASCENSIO (J.A.), LIU (H.B.), GARDEA-TORRESDEY (J.) -   *  -  J. Vac. Sci. Technol. B, 19, 1091 (2001).

  • ...

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Nanosciences et nanotechnologies

(151 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS