L'objet du présent article est de permettre de comparer rapidement les différentes familles de thermoplastiques, selon leurs principales caractéristiques physico-chimiques, mécaniques, thermiques et électriques, ainsi que leurs taux de matières renouvelables grâce à une représentation graphique des plages de valeurs pour chacune d'elles.
Les thermoplastiques se sont beaucoup développés et sont maintenant déclinés en de nombreuses familles, chacune comportant plusieurs grades de plusieurs producteurs et compoundeurs. La présélection des matériaux correspondant à un problème donné devient de plus en plus complexe. Pour faciliter ces présélections, les thermoplastiques ont été divisés en une centaine de sous-familles en tenant compte d'éventuels additifs : fibres de renfort (verre ou carbone), agents de renforcement, modifiants choc, lubrifiants, stabilisants, recyclé etc.
37 tableaux visualisent et classent les propriétés les plus utilisées de sous-familles de façon à faciliter la recherche de solutions. Ils regroupent :
-
les propriétés physico-chimiques (masse volumique, absorption d'eau) ;
-
les propriétés mécaniques (traction, flexion, compression, chocs Charpy et Izod, dureté Shore D et Rockwell M) ;
-
les propriétés thermiques (coefficient de dilatation, conductivité thermique, fusion, température de ramollissement Vicat, température maximale d'utilisation continue sans contrainte, température transition vitreuse, température de fragilité ou température minimale d'utilisation, températures de fléchissement sous charge, indice de fluidité à chaud) ;
-
les propriétés diélectriques (résistivités superficielle et transversale, rigidité diélectrique, permittivités relatives ou constantes diélectriques, facteurs de dissipation diélectrique) ;
-
les propriétés optiques (indice de réfraction) ;
-
le comportement au feu (indice d'oxygène) ;
-
le taux de composants issus de sources renouvelables.
Les graphes classent les sous-familles dans l'ordre croissant des plages de valeurs pour chacune des 37 propriétés retenues. Les valeurs minimales et maximales sont extraites des articles de monographie et des documentations des divers producteurs et de la littérature technique.
Dans la mesure du possible, les valeurs d'une caractéristique donnée correspondent à une même méthode de mesure régie par des normes équivalentes. Toutefois, il existe des exceptions ou des imprécisions, comme, par exemple :
-
les températures de résistance continue sans contrainte et la température de fragilité (ou température minimale de service) qui ne sont pas des grandeurs normalisées mais sont d'un grand intérêt d'un point de vue pratique ;
-
la rigidité diélectrique dont la méthode n'est pas toujours précisée dans ses détails opératoires tels que l'épaisseur de l'éprouvette ou la nature du milieu ;
-
le taux de composants issus de sources renouvelables qui n'est pas précisément défini mais permet de situer un matière dans le courant environnemental actuel.
Il convient d'être prudent sur l'utilisation des valeurs indiquées qui ne peuvent se substituer aux valeurs notifiées par le Producteur ou le Transformateur du grade finalement sélectionné. Les propriétés sont mesurées sur des éprouvettes d'essais dont la mise en œuvre est normalisée et, dans la réalité, les valeurs peuvent être notablement différentes pour de multiples raisons, par exemple :
-
présence d'additifs de toute nature : colorants nucléophiles, plastifiants fonctionnels, fibres ou noir de carbone, agents de démoulage, antistatiques, déchets rebroyés, recyclé ;
-
conditions de mise en œuvre entraînant des variations de cristallinité, des contraintes résiduelles, une orientation des macromolécules et des renforts, des défauts physiques tels que des lignes de soudure... ;
-
finition : traitement de surface, peinture, assemblage...
Les températures d'essai sont de 20 oC ou 23 oC, ce qui n'est pas forcément la température d'utilisation. En outre, pour certains matériaux, un faible écart de température peut entraîner des variations notables de propriétés (module du PVC plastifié, coefficient de dilatation du PTFE...).
L'hygrométrie joue également un rôle qui n'est pas négligeable, notamment pour les polyamides qui sont plastifiés par l'eau absorbée.