Présentation

Article

1 - GÉNÉRALITÉS

2 - PROPRIÉTÉS PHYSIQUES

3 - ALLIAGES DE MOLYBDÈNE

  • 3.1 - Alliages durcis par carbures
  • 3.2 - Alliages par substitution
  • 3.3 - Alliages à phases dispersées
  • 3.4 - Céramiques

4 - PROPRIÉTÉS MÉCANIQUES

5 - TENUE EN CORROSION

6 - MISE EN ŒUVRE

7 - APPLICATIONS

Article de référence | Réf : M565 v2

Applications
Propriétés du molybdène et des alliages à base de molybdène

Auteur(s) : Corinne BOURGÈS MONNIER

Date de publication : 10 juin 1998

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Auteur(s)

  • Corinne BOURGÈS MONNIER : Docteur en sciences et génie des matériaux - École des mines, Paris - Ingénieur nouveaux produits - Plansee France

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

INTRODUCTION

Longtemps considéré comme métal rare, le molybdène n’a véritablement suscité un intérêt qu’au cours de la Première Guerre mondiale en tant que substitut du tungstène dans les aciers.

Ses applications et celles de ses alliages mettent à profit l’ensemble de ses propriétés telles que : haute température de fusion, grand module d’élasticité, résistance mécanique élevée à haute température, bonnes conductivités électrique et thermique, bon coefficients de dilatation et de frottement, excellente résistance à la corrosion dans de nombreux milieux.

Les principales industries utilisatrices de molybdène sont les industries électrique et électronique, l’industrie verrière, la construction de fours, l’industrie chimique, les revêtements par métallisation, les applications militaires...

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

VERSIONS

Il existe d'autres versions de cet article :

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v2-m565


Cet article fait partie de l’offre

Étude et propriétés des métaux

(199 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation

7. Applications

Les industries électrique et électronique sont les premières consommatrices de molybdène. Des fils, rubans, cupules de molybdène, molybdène-lanthane et molybdène-yttrium sont utilisés dans l’éclairage ; le Mo-Y permet de sceller les verres de quartz pour les lampes à décharge et halogène par exemple. L’électronique utilise le molybdène pur ou les composites Mo-Cu (squelette fritté en molybdène infiltré de cuivre) comme drains thermiques . La télévision haute définition utilise de petits tubes en molybdène de haute pureté. Des composés métalliques en poudre de Mo, Ag, Cu sont souvent utilisés pour les contacts électriques (dureté et bonne conductibilité). Les appareils de diagnostic médical utilisent également des anodes pour systèmes à rayons X ou des pièces de cathode.

Dans l’industrie des fours à haute température (jusqu’à 1 800 C) travaillant sous vide ou sous atmosphère (généralement l’hydrogène car il réduit les oxydes de molybdène), on utilise le molybdène, le molybdène HT et le TZM comme écrans réflecteurs (voir figure 12), résistances ou nacelles et plateaux de frittage (applications nucléaires) ou de recuit. Comme dans le cas du tungstène ; il faut limiter la teneur en eau à 0,5 g/m3 sous peine de voir apparaître un phénomène, appelé « Water Cycling » ; il s’agit d’une vaporisation des oxydes qui se recondensent aux endroits les plus froids du four où ils sont réduits par l’hydrogène et forment des dendrites. Les pièces à traiter peuvent également réagir avec les éléments du four ; le graphite par exemple réagit vers 1 200 C et 1 400 C. Les alliages Mo-5Re et Mo-41Re servent comme thermocouples sous vide ou sous gaz inerte jusqu’à 1 800 C. Les propriétés mécaniques (formabilité à l’ambiante et résistance mécanique en température) et la résistance aux chocs thermiques des alliages contenant plus de 41 % Re...

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Étude et propriétés des métaux

(199 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Applications
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) -   *  -  Encyclopædia Universalis, vol 8.

  • (2) -   Metals Reference.  -  5th Edition, Butterwoth.

  • (3) - ROBBINS (P.), EDWARDS (J.) -   Guide des métaux non ferreux.  -  1982 Hermes.

  • (4) -   Non ferrous Metal Data  -  . 1995 American Bureau of Metal Statistics Inc.

  • (5) - BENESOVSKY (F.) -   Pulvermetallurgie und Sinterwerkstoffe  -  , (Métallurgie des poudres et frittage). Vorträge im Rahmen des PLANSEE Bildungsprogramms, 1982.

  • (6) - YANG (B.), SONG (L.Y.) -   Making superfine Molybdenum Powder by activated reducing Method  -  , (Élaboration de poudre de molybdène superfine par une méthode de réduction activée). Proceeding of the 13th Plansee Seminar, Vol. 1, 1993, p. 524-530, Eds H. Bildstein and R. Eck, Metallwerk Plansee, Reutte (Autriche).

  • ...

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Étude et propriétés des métaux

(199 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS