Présentation

Article

1 - GRANDEURS MOLAIRES, MASSIQUES, VOLUMIQUES

2 - RAPPELS SUR LES GAZ PARFAITS ET LEURS MÉLANGES

  • 2.1 - Capacités thermiques molaires à pression constante
  • 2.2 - Facteur de compressibilité et pression partielle
  • 2.3 - Mélange de gaz parfaits

3 - ÉTATS CORRESPONDANTS

4 - PARAMÈTRES D’INTERACTION. GÉNÉRALISATION DE LA LOI DES ÉTATS CORRESPONDANTS

  • 4.1 - Interaction dans une paire de molécules
  • 4.2 - Loi complète des états correspondants
  • 4.3 - Conditions nécessaires de correspondance des états

5 - FLUIDES NON POLAIRES. TABLES DE LEE-KESLER

6 - FLUIDES POLAIRES ET TABLES COMPLÉMENTAIRES DE WU ET STIEL

7 - FLUIDES QUANTIQUES

8 - ÉQUILIBRE LIQUIDE-VAPEUR D’UN CORPS PUR

  • 8.1 - Pression de saturation
  • 8.2 - Volume molaire du liquide saturé
  • 8.3 - Volume molaire de la vapeur saturante
  • 8.4 - Les différentes enthalpies sur la courbe de saturation

9 - GAZ DILUÉS

10 - MÉLANGES DE FLUIDES NON POLAIRES

  • 10.1 - Mélange de gaz dilués
  • 10.2 - Mélange de gaz
  • 10.3 - Mélange de liquides

11 - EXEMPLES

  • 11.1 - Température d’inversion pour une détente laminée
  • 11.2 - Étude de la détente isotherme
  • 11.3 - Coefficient de détente isentropique
  • 11.4 - Tension interfaciale des liquides en présence de gaz pour des mélanges

12 - CONCLUSION

Article de référence | Réf : K535 v2

Gaz dilués
Constantes thermodynamiques - Données thermodynamiques des fluides

Auteur(s) : Jean GOSSE

Date de publication : 10 juin 1990

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Auteur(s)

  • Jean GOSSE : Professeur de Thermique en vue des applications à l’industrieConservatoire National des Arts et Métiers (CNAM)

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

INTRODUCTION

Les grandeurs thermodynamiques d’un fluide gazeux ou liquide sont calculables à partir de son équation p V T. De multiples expressions analytiques permettent de représenter la compressibilité des fluides avec une précision acceptable, mais dans des domaines généralement peu étendus de pression et de température. Le lecteur se reportera aux articles de la rubrique Thermodynamique du traité Sciences fondamentales qui donnent les équations d’état les plus connues. Celles-ci ont des formes analytiques qui contiennent des paramètres dont les valeurs numériques sont déterminées par ajustement avec les essais de compressibilité.

L’eau, qui présente un comportement singulier à l’état liquide autour de 4 oC, a été très étudiée expérimentalement car elle est le vecteur énergétique industriel par excellence. Les autres fluides qui ont fait l’objet d’expérimentations, bien moins denses mais faibles, sont relativement peu nombreux eu égard à la variété offerte par la chimie. On peut s’appuyer sur une trentaine de corps purs pour, à partir des règles de l’analyse dimensionnelle, extrapoler à un fluide quelconque ce qui est commun aux fluides connus appartenant à la même famille.

Il faut donc définir des classes de fluides par leurs caractères moléculaires essentiels. On traitera brièvement des fluides quantiques qui constituent une famille très restreinte, pour porter toute l’attention aux fluides polyatomiques non polaires ou polaires. On montrera à travers des exemples comment exploiter l’approche de Pitzer, améliorée par Lee, Kesler et Wu, dans la résolution de problèmes pratiques. Le texte qui suit illustre une façon de calculer les propriétés thermodynamiques des fluides par une approche facilement utilisable par les ingénieurs.

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

VERSIONS

Il existe d'autres versions de cet article :

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v2-k535


Cet article fait partie de l’offre

Caractérisation et propriétés de la matière

(115 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation

9. Gaz dilués

Un gaz réel est dit à l’état dilué si les conditions de pression, de température sont telles que les interactions moléculaires soient faibles. L’équation d’état correspondante est :

avec :

B
 : 
second coefficient du viriel qui est fonction de la nature du gaz et de la température
V
 : 
volume molaire
Z
 : 
facteur de compressibilité.

Pour guider les idées, disons que cette expression représente la compressibilité d’un gaz réel à 1 % près environ pour :

Exemple

peut-on considérer l’azote pris dans les conditions normales de température et de pression comme un gaz parfait ?

Au point critique, on a T c = 126,2 K et pc = 33,5 atm. Dans les conditions NTP, T + = 273/126,2 = 2,16 et .

Par comparaison avec le critère T + = 2 et , on peut accepter l’assimilation à un gaz très dilué, c’est-à-dire presque parfait.

Afin de ne pas alourdir ce texte, on ne considère que le cas des gaz dilués non polaires (et non quantiques). Le coefficient B peut être calculé à partir du potentiel...

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Caractérisation et propriétés de la matière

(115 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Gaz dilués
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - REID (R.C.), PRAUSNITZ (J.M.), SHERWOOD (T.K.) -   The properties of gases and liquids.  -  688 p., bibl. nombreuses réf., New York 3e éd., McGraw Hill (*Δ) (1977).

  • (2) - SVEHLA (R.A.) -   Estimated viscosities and thermal conductivities of gases at high temperatures.  -  119 p (contient les données ) Technical Report R-132, NASA* (1962).

  • (3) -   Propriétés thermodynamiques et propriétés de transport des gaz pour les processus de compression et de détente.  -   [Répertoire de sources de données (53 p.) qui, principalement, reproduit la table de REID (R.C.), PRAUSNITZ (J.M.), SHERWOOD (T.K.) - The properties of gases and liquids. mais qui est plus facile à compulser], AFNOR FD E 51-300, oct. 1983.

  • (4) - PLANK (R.), RIEDEL (L.) -   Ein neues Kriterium für der Verlauf der Dampfdruckurve am kritischen Punkt.  -  Ing. Arch. (D),16, p. 255-66 (1948).

  • (5) - PITZER (K.S.) -   The volumetric and thermodynamic properties of fluids. I. Theoretical basis and virial coefficients.  -  J. Am. Chem. Soc., 77, p. 3427-33 (1955).

  • ...

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Caractérisation et propriétés de la matière

(115 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS